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Вступ 
У сучасному світі нафтогазова проми-

словість потребує постійного вдоскона-
лення методів аналізу даних для підви-
щення ефективності видобутку та змен-
шення ризиків. Одним із ключових етапів є 
аналіз каротажних даних, що дозволяє 
отримати інформацію про геологічну бу-
дову родовища та властивості порід. Тра-
диційні методи аналізу часто є трудоміст-
кими та суб’єктивними, що призводить до 
зниження точності та ефективності прийн-
яття рішень. Тому розробка автоматизова-
них методів аналізу каротажних даних є 
актуальною та важливою задачею. 

У зв’язку з цим, застосування методів 
машинного (зокрема глибокого) навчання, 
стає все більш перспективним напрямком 
досліджень. Глибоке навчання дозволяє 

автоматизувати складні процеси аналізу 
даних, виявляти приховані закономірності 
та покращувати точність прогнозування. 
Застосування класифікаційно-порівняльних 
методів обробки каротажних даних на ос-
нові глибокого навчання дозволяє підви-
щити ефективність аналізу та прийняття 
рішень у нафтогазовій промисловості. 

 
Мета роботи – розробка моделі кла-

сифікації та порівняння каротажних даних 
свердловин. 

 
Аналіз сучасних закордонних і віт-

чизняних досліджень та публікацій 
Виявлення подібності між свердлови-

нами є необхідною частиною багатьох 
процедур. Це сприяє розумінню характе-
ристик свердловини, плануванню стратегії 

Тріщ В. В. 
Аспірант 
Івано-Франківський національний технічний університет нафти і газу 
76019, вул. Карпатська, 19, м. Івано-Франківськ, Україна 
https://orcid.org/0009-0000-8564-1752 
e-mail: vlad.trishch@gmail.com  
 
Богдан О. Т. 
Аспірант 
Івано-Франківський національний технічний університет нафти і газу 
76019, вул. Карпатська, 19, м. Івано-Франківськ, Україна 
https://orcid.org/0009-0000-9539-6359 
e-mail: oleksiibohdan@gmail.com 
 
Анотація. У нафтовидобувній галузі об’єктом дослідження є виявлення параметричної схожості та відміннос-
тей між свердловинами з метою підвищення точності геологічного моделювання, оптимізації бурових робіт і 
прогнозування продуктивності пластів. У статті представлено модель для класифікації та порівняння карота-
жних даних свердловин на основі сучасних методів машинного та глибокого навчання. Наведено аналітич-
ний огляд існуючих підходів до оцінювання кореляції між свердловинами, зокрема методів ручного аналізу, 
що базуються на експертних оцінках фахівців галузі, та використання простих коефіцієнтів подібності. Такі 
методи мають суттєві обмеження, пов’язані з високою суб’єктивністю, низькою відтворюваністю результатів і 
складністю масштабування на великі обсяги даних. Для подолання зазначених недоліків запропоновано під-
хід на основі глибокого навчання, який забезпечує автоматизацію процесів аналізу, підтримки та прийняття 
рішень у дослідженні свердловин. Розроблено модель, що використовує архітектуру рекурентної нейронної 
мережі (RNN), орієнтовану на обробку послідовних даних і виявлення довгострокових залежностей між ни-
ми, з використанням шарів нейронної мережі для оцінки подібності. Запропоновано візуалізацію на основі 
схем оцінки подібності для пари інтервалів та схему порівняльного навчання на основі триплетних втрат. 
Ефективність моделі оцінюється за допомогою метрик класифікації та кластеризації, що дозволяє кількісно 
визначити якість групування свердловин за параметрами подібності. Реалізований підхід є універсальним та 
надійним методом для впровадження процесу автоматизованого аналізу свердловин, спрямованого на 
зменшення залучення ручної праці фахівців і підвищення ефективності. 
 
Ключові слова: аналіз свердловин, каротажні дані, глибоке навчання, нейронні мережі, моделювання, ме-
тодологія, модель, агрегація даних, екстраполяція моделі, оцінка ефективності, автоматизація, прийняття 
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розробки родовища, виявленню аномалій 
під час процесу буріння, створенню синте-
тичних даних, наближених до реальних, і 
багатьом іншим задачам [1,2]. Сучасні ме-
тоди оцінки кореляції між свердловинами 
в основному зосереджені на майже ручно-
му аналізі характеристик експертами або 
оцінці деяких неприродних коефіцієнтів 
подібності, наприклад, простої евклідової 
відстані або більш складної ймовірності 
синхронізації [1]. Спільними для цих кла-
сичних підходів є відносно низька склад-
ність моделей і, відповідно, наявність об-
межень для їх застосування. Вони вимага-
ють складного вибору характеристик вхід-
них даних і гіперпараметрів моделі. Мож-
ливою альтернативою є рішення на основі 
даних. Такі моделі автоматизують прий-
няття рішень, зменшуючи кількість ручної 
праці, та менш схильні до помилок і 
суб’єктивності [2,3]. Однак, можна адапту-
вати потужні парадигми для навчання за 
подібністю [2,4]. Глибоке навчання і ней-
ронні мережі (НМ) стали поширеним ін-
струментом для розв’язання різних про-
блем. Це пов’язано зі здатністю нейронних 
мереж витягувати значущі представлення 
на основі даних і обчислювати подібності 
об’єктів на основі цих представлень. 

Загальною проблемою для НМ є об-
межені позначені дані. Проте, сучасні до-
сягнення неконтрольованих і самоконтро-
льованих парадигм дозволяють дослідни-
кам подолати цю проблему [5]. Ці методи 
автоматично виділяють ознаки або уявлен-
ня і, таким чином, працюють без конкрет-
них суб’єктивних знань експертів.  

Проаналізуємо наявні розробки в на-
вчанні подібності, пов’язані з нафтогазо-
вою промисловістю. Зосереджуємося на 
основних трьох напрямках досліджень, 
пов’язаних з простими підходами на основі 
правил, класичними підходами машинного 
навчання та підходами глибокого навчан-
ня. Підхід, заснований на правилах, пропо-
нує визначити логічні правила для кореля-
ції між свердловинами та визначення зон в 
інтервалах свердловин на основі поперед-
ніх знань експертів. Розглядають вирівню-
вання за допомогою динамічного викрив-
лення часу на основі типових геометрич-

них відстаней [6]. Після вирівнювання 
кривих експерт вирішує, чи вони схожі. 
Розроблено також метод оцінки подібності 
на основі статистичних методів [1]. Незва-
жаючи на те, що згадані підходи досить 
прості для реалізації та легкі для інтерпре-
тації, вони, в основному, зосереджені на 
розгляді однієї конкретної особливості до-
бре реєстрованих даних та втрачають цін-
ну інформацію. Крім того, більшість із них 
вимагає залучення експерта. 

В останні роки підходи класичного 
машинного навчання і глибокого навчання 
досягли більше успіхів у розробці геологі-
чних моделей. Використовують машину 
опорних векторів (SVM) для отримання 
плавного представлення даних, а потім за-
стосовують загальні відстані кластеризації, 
як відстані Жаккара, для обчислення поді-
бності між мітками свердловин [7]. Най-
більш схожі свердловини використовують-
ся для прогнозування каротажу. Хоча ме-
тод показує прийнятні результати, підтве-
рджені оцінкою експертів, така модель від-
стані ігнорує природу даних, покладаю-
чись на ретельно відібрані характеристики. 
Таким чином, метод не може ідентифіку-
вати представлення свердловини та має 
обмежену застосовність, адаптовану до ро-
зглянутих діапазонів вибраних характерис-
тик. Дослідження [2] запроваджує навчан-
ня подібності на основі даних вимірювання 
під час буріння (MWD) для виявлення ава-
рій під час буріння. Автори демонструють 
застосування керованого навчання подіб-
ності з функціями, створеними експерта-
ми: вони агрегують статистику для часових 
інтервалів і вивчають класифікатор, який 
передбачає, чи відповідають інтервали різ-
ним або схожим аварійним випадкам. Оче-
видним обмеженням є ручне отримання 
мічених наборів даних для навчання такої 
системи, оскільки потрібні сотні мічених 
аварій. 

Завдяки глибокому навчанню штучні 
нейронні мережі виконують кореляційну 
оцінку для свердловин. Ці моделі на основі 
даних використовують різні характеристи-
ки як вхідні дані: видобуток нафти, обвод-
неність, тиск нагнітання, характеристики 
проникності або зображення, отримані з 
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цифрового каротажу. Нейронна мережа 
Convolution використовується для прогно-
зування регіональної проникності на основі 
набору геологічних особливостей [8].  

 
Виклад основного матеріалу 
Для прогнозування взаємозв’язку між 

видобувними свердловинами та оточую-
чими нагнітальними свердловинами на ос-
нові видобутку рідини та закачування води 
використовують мережу довготривалої ко-
роткочасної пам’яті. Після навчання мере-
жі застосовують методи аналізу чутливості 
для отримання коефіцієнтів зв’язку між 
свердловинами.  

Вся свердловина містить багато різних 
підшарів, тому, обчислюючи подібність 
між підінтервалами двох свердловин і по-
тім об’єднуючи їх, можна дізнатися точні-
ші моделі. Такий підхід є природним вибо-
ром, оскільки зазвичай свердловини мають 
різну довжину.  

Розглядається набір даних, який скла-
дається з інтервалів свердловин; i-ий інте-
рвал складається з відповідних складових: 

 1 ,...,i i l ii
X x x , d

jix R , де il  є довжина   

i-го інтервалу, а d  – це кількість ознак, зіб-
раних на кожному кроці інтервалу. 

Будуємо модель на основі даних, яка 
приймає як вхідні дані про два інтервали 

 ,i jX X  і виводить подібність між цими 

двома інтервалами   ,ij i js s X X . Якщо 

інтервали близькі один до одного, модель 
подібності повинна виводити значення, 
близькі до 1, в іншому випадку оцінка 
схожості повинна бути близькою до 0. 

Розглядаються два підходи до позна-
чення пар інтервалів для навчання класи-
фікатора подібності: 

Для проблеми зв’язування очікується 
виведення класифікатора 1, якщо два інте-
рвали беруть з однієї свердловини, і 0,  
якщо із двох різних свердловин. 

Для проблеми закритого зв’язування 
очікується виведення класифікатора 1, як-
що два інтервали беруть з однієї свердло-
вини і є близькі один до одного за глиби-
ною, і 0, якщо вони не відповідають цим 
двом вимогам. 

Двічі запускається рекурентна нейрон-
на мережа (RNN), щоб обробити дані з 
двох інтервалів і отримати їх вкладення. 
Щоб оцінити подібність за парою вкла-
день, використовуються шари нейронної 
мережі. Під час навчання змінюються па-
раметри RNN і частина оцінки подібності, 
щоб відповідати цільовим подібностям між 
парами інтервалів. 

Розглядається трійка інтервальних 
об’єктів: якір, позитивний об’єкт, схожий 
на якір, і негативний об’єкт, несхожий на 
якір. Після вкладення триплетних інтерва-
лів модель штрафується, якщо відстань 
між якорем та негативом менша за відстань 
між якорем та позитивом. 

Через складність дані про нафту та газ 
вимагають ретельної попередньої обробки. 
Кроки в цьому контексті включають:  
1) заповнення відсутніх значень; 2) роботу 
з конкретними особливостями каротажу;  
3) вибір інтервалів зі свердловини, необ-
хідних для навчання моделі. Потрібен до-
датковий крок для базових моделей, які 
потребують значущих ознак як вхідних  
даних: 4) генерація вектора ознак.  

1) Заповнення відсутніх значень. Знач-
на частка вимірювань у проаналізованих 
даних відсутня. Стратегія заповнення може 
дозволити використовувати більшість дос-
тупних даних. Якщо це можливо, заповню-
ємо кожне пропущене значення поперед-
нім не пропущеним (пряме заповнення), 
інакше – найближчим доступним майбут-
нім значенням (зворотне заповнення). 
Оскільки використовується багато інтерва-
лів для оцінки подібності між свердлови-
нами, ці стратегії забезпечують достатнє 
покриття для роботи методів. 

2) Робота з особливостями. Моделі 
машинного та глибокого навчання зазви-
чай вимагають обробки даних через спе-
цифіку технологічних умов у свердловинах 
під час каротажу. Попередня обробка 
включає такі кроки: 

1. Виключення фізично неадекватних 
даних, тобто інтервалів, де питомий елект-
ричний опір менший або дорівнює 0. 

2. Перетворення усіх даних питомого 
електричного опору в логарифмічний нор-
мальний масштаб. 
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3. Нормалізація даних гамма каротажу 
в кожній свердловині та пласті шляхом ві-
днімання середнього значення та розділен-
ня отриманих значень, щоб отримати оди-
ничну дисперсію. 

4. Нормалізація інших ознак шляхом 
віднімання середнього значення та ділення 
отриманих значень, щоб отримати одинич-
ну дисперсію. 

3) Інтервали вибірки. Вибираємо пари 
інтервалів фіксованої довжини 100 вимі-
рювань зі свердловин для основних експе-
риментів. Різниця в глибині між двома  
послідовними вимірюваннями становить 
0,15 фута. Такі методи дозволяють ство-
рювати великі навчальні та перевірочні на-
бори пар інтервалів, які можуть бути вирі-
шальними для методів глибокого навчан-
ня. Для навчання формуємо стратифіковані 
вибірки, які мають майже однакову кіль-
кість пар подібних і різних інтервалів. Для 
інших частин експериментів, пов’язаних із 
побудовою представлення цілої свердло-
вини, розділяємо свердловину на інтерва-
ли, що не перекриваються, однакової дов-
жини l=100. У загальній класифікації стра-
тегій вибірки можна назвати це стратифі-
кованим варіантом пакетної вибірки для 
вивчення подібності. 

4) Генерація вектора ознак (якщо не-
обхідно). Оскільки розглядаються інтерва-
льні рівні, то слід адаптувати дані для кла-
сичних методів машинного навчання. Ти-
повим рішенням проблеми є агрегування 
ознак на інтервалах з використанням, на-
приклад, середнього та стандартного від-
хилень. Отже, кожен інтервал розміром 
(100, k) відповідає вектору ознак розміру 
2k, де k – це кількість використаних зна-
чень. Перші k компоненти відповідають 
середнім значенням ознак, останні k ком-
поненти відповідають стандартним відхи-
ленням вздовж інтервалу. 

Оскільки використовуються моделі 
глибокого навчання для обробки даних, 
інтервал трохи більшої або трохи меншої 
довжини також можна використовувати як 
вхідні дані для моделі подібності. Конкре-
тна довжина 100 в цілому забезпечує при-
йнятну якість для побудованих моделей 
подібності, забезпечує швидку обробку та 

є достатньо великою, щоб фіксувати влас-
тивості на основі даних журналу. Для різ-
них свердловин маємо різну довжину, тому 
вибірка дасть нам різну роздільну здат-
ність для кожної свердловини, і відбира-
ється однакова кількість інтервалів для 
кожної свердловини. 

Для отримання подібності дотриму-
ються загальної парадигми сучасного гли-
бокого навчання на основі двофазної моде-
лі з кодувальником на першому етапі та 
прийняттям рішень на другому етапі. За-

стосовується модель кодера  i iE f X , 

щоб отримати вкладення для кожного ін-
тервалу. Потім порівнюється вбудовування 
за допомогою додаткової процедури 

 ,ij i js g E E  з відсутністю або невели-

кою кількістю параметрів для оцінки під 
час навчання. Вихідні дані цієї частини по-
відомляють про подібність між інтервала-
ми свердловин. На рисунку 1 представлена 
загальна схема того, як отримуються поді-
бності між двома інтервалами, оціненими 
моделлю. 

Існує два підходи до навчання таких 
моделей: один метод полягає в тому, щоб 
змусити модель вирішувати проблему кла-
сифікації (схожі об’єкти з пари чи ні); інша 
полягає в тому, щоб перемістити уявлення 
безпосередньо в латентному просторі.  

Природною альтернативою для безпо-
середньої роботи з представленнями є ви-
користання порівняльного навчання, зо-
браженого на рисунку 2. Розглянемо набір 
трійок. Кожен триплет складається з інтер-
валу прив’язки Xa, додатного інтервалу Xp

 
  

і від’ємного інтервалу Xn. Їх вибирають 
так, щоб інтервал прив’язки та додатний 
інтервал були подібними за мірою подіб-
ності. 

Формально триплетні втрати дорів-
нюють  

         max , , ,0a p a nd X X d X X   , (1) 

де   – маржа: якщо   ,a nd X X  значно 

(більш ніж  ) менше, ніж   ,a pd X X , то 

штрафується обчислена подібність і надалі 
модель повинна уникати таких ситуацій. Така 
втрата усереднюється для набору триплетів. 
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Рисунок 1 – Модель оцінки подібності  

для пари інтервалів  

 
Рисунок 2 – Схема порівняльного навчання 

На відміну від наведеного вище підхо-
ду на основі класифікації, триплетна мо-
дель, заснована на втраті триплетів, не ви-
рішує безпосередньо проблеми 
зв’язування. Тому потрібен класифікатор 
над триплетною моделлю. Щоб обчислити 
подібності, оцінюємо евклідову відстань 
або косинусну відстань між отриманими 
вкладеннями з триплетної моделі, таким 
чином приймаючи аналогічну двофазну 
схему з кодувальником і прийняттям рі-
шень на основі кодувальників. 

Найбільш природним вибором для по-
слідовних даних є архітектури моделей, 
засновані на рекурентних нейронних ме-
режах, таких як рекурентна мережа з дов-
гою короткочасною пам’яттю (LSTM) [9]. 

LSTM може фіксувати тимчасові за-
лежності та обробляти довгострокові зале-
жності, які з’являються в даних. Модель 
обробляє дані каротажу разом із її глиби-
ною послідовно одне за одним спостере-
женням на певній глибині. 

Проаналізуємо два варіанти оцінки 
схожості. Перший варіант полягає в тому, 
щоб обчислити евклідову (1) або косинус-
ну (2) відстань, як у базовій лінії, але тепер 
між вбудовуваннями, щоб отримати подіб-
ність. Другий варіант полягає в тому, щоб 
навчити окрему повністю зв’язану (FC) 
нейронну мережу оцінювати подібність. 
Перевагою першого підходу є пряма оцін-
ка відстані, тоді як у багатьох випадках до-
даткові повністю пов’язані проекційні ша-
ри дозволяють краще представити проміж-
ні шари нейронної мережі. 

Розглядаємо два підходи до навчання 
нейронних мереж: підхід на основі класи-
фікації та підхід на основі порівняння. Ос-
новні стратегії агрегації подібностей інтер-
валів до подібності свердловин. Важливо 
перенести подібність від рівня інтервалу 
до рівня свердловини за допомогою нале-
жної стратегії агрегування, оскільки, зреш-
тою, потрібні подібності між свердловина-
ми. Щоб використовувати подібність на 
рівні інтервалу, реалізується наведена ни-
жче процедура. Відокремлюємо для  m-ої 
свердловини послідовні інтервали з даними  

m
jX , 1,..., mj k . Те саме можна зробити 
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для n-ої свердловини. Для кожного такого 
інтервалу отримуємо вкладення 

 m m d
j w jE f X R  . У той же час для пари 

інтервалів  ,m m
j iX X  модель подібності 

забезпечує оцінку подібності  ijs . 

Застосовуємо макроагрегацію, якщо 
агрегуємо вкладення з інтервалу однієї 
свердловини, а потім отримуємо оцінку 
подібності для пари свердловин. Напри-
клад, використовуємо середнє значення 
для кожного компонента вектора вкла-
день:  

1

1
.

km
m m
j ij

j

E E
d 

       (2) 

Потім оцінюємо подібність нашою мо-

деллю  ,mn m ns g E E . Інший варіант – 

мікроагрегація, тобто спочатку обчислює-
мо подібності для пари інтервалів 

     ,m m
ij i js s X X ,         (3) 

а потім агрегуємо до подібності свердло-
вин 

                
1

.mn ij
m n ij

s s
k k

                    (4) 

Щоб прискорити обчислення, оперує-
мо лише частиною можливих пар інтерва-
лів, щоб отримати матрицю подібностей 
без використання надмірної суми.  Агрега-
ція через нейронну мережу. Досліджуємо 
модель, яка отримує дані каротажу для 
свердловин як вхідні дані (у вигляді послі-
довних інтервалів) і виводить вкладення 
всіх свердловин. Цей підхід є наскрізним 
навчанням. Частина, що відповідає вкла-
денню початкових даних реєстрації, є мо-
дель кодера, а частина, що відповідає агре-
гації вкладень інтервалів, є модель агрега-
ції. Навчаємо агрегаційну модель для про-
гнозування маркування свердловин експе-
ртом. Запропонуємо етап наскрізної про-
цедури навчання: здійснюється один крок 
оптимізації для моделі представлення інте-
рвалів (будь-який із перерахованих вище); 
вибираються тренувальні свердловини з 
інтервалами відповідної довжини; введен-

ня інтервалів в отриману модель представ-
лення, щоб отримати набір вкладень; вве-
дення послідовності вкладень в агрегацій-
ну модель і навчання моделі. 

Модель подібності повинна добре екс-
траполюватися, щоб бути ефективною. Ро-
зглядаємо дві властивості, пов’язані з екст-
раполяційною здатністю моделі: (1) засто-
совність у широкому діапазоні сценаріїв і 
(2) швидка адаптація до даних з нових об-
ластей за допомогою трансферного на-
вчання або без нього.  

Можливості адаптації моделі порівню-
ємо кількома поширеними способами: 

1) Збереження моделі без змін і засто-
сування її безпосередньо до нових даних, 
оскільки очікуємо, що нові дані будуть 
схожі на старі. Це найшвидший спосіб, 
який на практиці може погано працювати 
через відмінності в зборі та організації да-
них, а також через різні властивості різних 
нафтових родовищ. 

2) Навчаємо нову модель з нуля, вико-
ристовуючи лише нові дані. На відміну від 
попереднього, це найбільш небажаний під-
хід, який потребує багато часу та обчислю-
вальних ресурсів. Крім того, якщо розмір 
нових даних обмежений, отримаємо мо-
дель із недостатньою продуктивністю. 

3) Налаштовуємо стару модель, вико-
ристовуючи нові дані, щоб зафіксувати 
особливості нових даних, що є компроміс-
ним рішенням. 

Якщо незмінена або точно налаштова-
на модель перевершує модель, навчену з 
нуля за допомогою нових даних, то отри-
муємо доказ того, що представлення та мі-
ри подібності є універсальними та можуть 
застосовуватися в різних сценаріях і для 
різних даних. 

Робочий процес застосування моделі 
навчання подібності, що дозволяє вивчати 
моделі без міток, наданих експертами, 
складається з чотирьох кроків: 

1) Попередня обробка: перетворює по-
чаткові необроблені дані та готує їх для 
використання як вхідних даних для коду-
вальника. Дуже важливо підтримувати по-
дібний формат введення різноманітних да-
них, виключати нереалістичні вимірюван-
ня та продовжувати з відсутніми даними. 
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2) Вибірка: вибірка інтервалів дозволяє 
використовувати більше прикладів для на-
вчання. Це також змушує модель вивчати 
шаблони меншого масштабу. 

3) Обчислення подібності:  отримуємо 
оцінки подібності між парами інтервалів за 
допомогою моделі на основі даних. 

4) Сукупні оцінки подібності:  повер-
таємося від рівня інтервалів до рівня свер-
дловин шляхом агрегування оцінок, отри-
маних під час попереднього кроку обчис-
лення. 

Для проблеми класифікації модель на 
основі даних передбачає мітку класу для 
об’єкта. Модель намагається зробити яко-
мога менше помилок, класифікуючи, на-
приклад, чи є пара інтервалів (об’єкт) по-
дібною чи ні (дві можливі мітки класу). 
Зведені показники якості машинного на-
вчання наведено в таблиці 1: 

Таблиця 1 – Показники якості машинного 
навчання  

Метрика Задача Діапазон 
Точність Класифікація (0, 1) 
ROC AUC Класифікація (0, 1) 
PR AUC Класифікація (0, 1) 
ARI Кластеризація (−1, 1) 
AMI Кластеризація (−1, 1) 
V-міра Кластеризація (0, 1) 

 
Щоб оцінити якість моделей, придат-

них для проблем класифікації (наприклад, 
проблеми зв’язування), використовуються 
класичні показники машинного навчання: 
точність, площа під кривою робочих хара-
ктеристик приймача (ROC AUC) і площа 
під кривою точності-відклику (PR AUC). 

Розглядаємо набір даних  ,i iD X y , 

1,...,i n . У цьому позначенні 2l d
iX R   є 

даними для пари інтервалів довжини l , що 
складається з d-значних мір на кожному 

кроці. Мітка iy   – це цільове значення. Для 

проблеми зв’язування iy дорівнює 0 (різні 

інтервали) або 1 (подібні інтервали). Поз-

начимо  ˆi iy f X  прогнозовану мітку 

моделі класифікатора  f X . 

Показники ROC AUC і PR AUC часто 
використовуються в машинному навчанні 

[2], оскільки краще підходять для загальної 
оцінки ефективності класифікатора.  

Щоб визначити ROC AUC і PR AUC, 
спочатку вводимо більш базові показники, 
відображені в матриці збурення, що пред-
ставляє ефективність моделі класифікації. 
Матриця збурення складається з чотирьох 
метрик: кількість об’єктів True Positive 
(TP), False Negative (FN), False Positive 
(FP), True Negative (TN): 

  
1

1
ˆ1 1

n

i i
i

TP y y
N 

   ,      (5) 

  
1

1
ˆ1 0

n

i i
i

FN y y
N 

   ,         (6) 

  
1

1
ˆ0 1

n

i i
i

FP y y
N 

   ,          (7) 

  
1

1
ˆ0 0

n

i i
i

TN y y
N 

   .        (8). 

Ці показники відрізняють правильні 
мітки та помилки для першого та другого 
класу в проблемі класифікації. 

Можна розглядати деякі пов’язані по-
казники істинної позитивної частоти (TPR) 
або відкликання, помилкової позитивної 
частоти (FPR) і точності (PR): 

                    
TP

TPR
TP FN




,           (9) 

      
FP

FPR
FP TN




,       (10) 

                       .
TP

PR
TP FP




        (11) 

Важливо зазначити, що, насправді, 
кожна модель класифікації передбачає не 
конкретну мітку, а ймовірності p принале-

жності до класу      0,1pp X f X  . 

Щоб отримати мітку, модель порівнює 
отримані ймовірності з деяким порогом  

0p . Об'єкт належить до класу, якщо відпо-

відна прогнозована ймовірність вище по-

рогу 0p p . 

Порівнюючи отримані ймовірності з 
набором порогів від 0 до 1 і обчислюючи 
матриці збурення для кожного порогу, 
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отримуємо траєкторію в просторі (TPR, 
FPR) і подібну в просторі (TPR, PR) з кож-
ною парою значень, що відповідають зада-
ному порогу. Отримані криві називаються 
відповідно кривою ROC і кривою TPR-PR, 
а використовувані метрики – це площі під 
цими кривими. 

Розглядаються три типи істинних ці-
льових значень: вкладення інтервалів з од-
нієї свердловини буде близьким один до 
одного. Для цього маркування не викорис-
товуються експертні оцінки; вкладення ін-
тервалів з одного класу будуть близькі од-
не до одного, але вкладення можуть збіга-
тися з різними свердловинами та лежати в 
різних шарах; вкладення  інтервалів з од-
ного класу та одного шару (позначення ек-
сперта) буде близьким одне до одного, але 
вбудовування можуть збігатися з різними 
свердловинами. Використовується скори-
гований індекс Ренда (ARI) як показник 
якості кластеризації, оскільки він забезпе-
чує добре уявлення про якість кластериза-
ції та має інтуїтивно зрозуміле пояснення. 
ARI вимірює подібність двох значень, іг-
норуючи перестановки порядку можливих 
міток. Формальне визначення ARI таке. 
Позначимо  через n загальну кількість об'є-
ктів з перевірочної вибірки, a  – кількість 
пар в одному кластері з однаковою міткою, 
b – кількість пар, які знаходяться в різних 
кластерах і мають різні мітки. Отже,   
a b – кількість пар із подібним маркуван-
ням за моделлю та відповідно до істинних 
міток. Тоді індекс Ренда (RI):  

              
2
n

a b
RI

C


 ,                  (12) 

де 
 

2

1

2
n n n

C


  – біноміальний коефіці-

єнт, який дорівнює загальній кількості різ-
них пар для вибірки розміру  n. 

Скоригований індекс Ренда – це індекс 
Ренда, скоригований на ймовірність випа-
дкового призначення міток:  

      
 

   max

RI RI
ARI

RI RI





,       (13) 

де   RI  є очікуванням індексу Ренда для 

випадкового вибору міток кластера. 
Визначаємо дві альтернативні метри-

ки: скориговану взаємну інформацію 
(AMI) і V-міру, які разом із ARI надають 
ширшу картину якості розглянутих моде-
лей. 

Визначимо дві мітки U і V та позначи-

мо i
i

U
P

n
 , 

j
j

V
P

n
  . Тоді ентропія U за-

дається як: 

            
1

ln .
Ui

i i
i

H U P P


                  (14) 

Подібним чином для V. Позначимо 

i j
ij

U V
P

n


 . Тоді взаємна інформація 

(MI) між U і V це: 

      , ln .
ij

ij
i j

P
MI U V P

PP

 
  

  
       (15) 

Скоригована взаємна інформація – це 
взаємна інформація, скоригована на мож-
ливість випадкового призначення міток: 

 
      

,
,

MI MI
AMI

mean H U H V MI





 (16) 

де  MI  – очікувана взаємна інформація 

для випадкового вибору. 
Розглянемо V-міру, яка є гармонійним 

середнім однорідності h і повноти c. Одно-
рідність – це властивість розподілу класте-
рів, що кожен кластер містить лише члени 
одного класу:  

           
 
 

1 .
H C K

h
H C

                  (17) 

Повнота – це властивість розподілу 
кластера, згідно з якою всі члени даного 
класу призначаються одному кластеру:  

 
 

1 .
H K C

h
H K

    (18) 
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 H C K   є умовною ентропією класів із 

заданими кластерними призначеннями і 

 H C  є ентропією класів:  

 
1 1

ln ,
C K

ck ck

c k

n n
H C K

n n 

 
   

 
    (19) 

де ckn  є кількість об’єктів c-го кластера, 

які потрапляють в k-ий клас.  

     
1

ln .
C

c c

c

n n
H C

n n

 
   

 
           (20) 

Тоді V-міра: 

2
.

hc
v

h c



                    (21) 

 
Висновки 
Запропоновано комплексну оцінку 

ефективності моделі для класифікації та 
порівняння каротажних даних, що включає 
використання двох груп метрик. Викорис-
тано метрики класифікації, такі як ROC 
AUC та PR AUC, для визначення належно-
сті інтервалів до однієї свердловини, що 

дає змогу оцінити здатність моделі прави-
льно ідентифікувати інтервали, що відно-
сяться до однієї свердловини. Для оцінки 
якості створених моделлю представлень 
застосовано метрики кластеризації 
Adjusted Rand Index (ARI), Adjusted Mutual 
Information (AMI) та V-міра, що дозволяє 
об’єктивно оцінити якість кластеризації 
результатів та порівняти їх з експертними 
оцінками. Особливу увагу приділено дос-
лідженню властивостей запропонованої 
моделі до екстраполяції, що робить мож-
ливою роботу з новими базами даних без 
необхідності додаткового навчання та пе-
реналаштування моделі під нові умови. Ре-
алізований підхід є універсальним та на-
дійним методом для реалізації процесу ав-
томатизованого аналізу свердловин в кон-
тексті зменшення залучення ручної праці 
фахівців. 
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Abstract. In the oil production industry, the research objective is to identify parametric similarities and 
differences between wells to improve the accuracy of geological modeling, optimize drilling operations, 
and predict reservoir productivity. The article presents a model for the classification and comparison of 
well logging data based on modern machine learning and deep learning methods. An analytical review of 
existing approaches for evaluating correlation between wells is provided, including manual analysis 
based on expert assessments and the use of simple similarity coefficients. These methods have signi-
ficant limitations associated with high subjectivity, low reproducibility of results, and difficulties in 
scaling to large datasets. To overcome these drawbacks, a deep learning–based approach is proposed 
that enables automation of data analysis, decision support, and pattern recognition in well studies. The 
developed model employs a recurrent neural network (RNN) architecture designed to process sequential 
data and capture long-term dependencies, utilizing neural network layers to assess similarity between 
well intervals. A visualization method based on similarity evaluation schemes for interval pairs and a 
comparative learning approach using a triplet loss function are proposed. The model’s performance is 
evaluated using classification and clustering metrics, which allow for quantitative assessment of well 
grouping quality according to similarity parameters. The implemented approach represents a universal 
and reliable method for automating well data analysis, aimed at reducing manual expert involvement 
and improving overall operational efficiency in geological and production processes. 
 
Keywords: well analysis, well logging data, deep learning, neural networks, modeling, methodology, 
model, data aggregation, model extrapolation, effectiveness evaluation, automation, decision-making, 
clustering. 
 


