THE SOLAR PANELS POWER CHANGE DEPENDING ON FROM THE MUTUAL BURNER CUT MODELING

  • M. O. Slabinoga IFNTUOG; 76019, Ivano-Frankivsk, Karpatska str., 15
  • Yu. M. Kuchirka IFNTUOG; 76019, Ivano-Frankivsk, Karpatska str., 15
  • О. S. Krynytskyi IFNTUOG; 76019, Ivano-Frankivsk, Karpatska str., 15
  • N. M. Yurkiv IFNTUOG; 76019, Ivano-Frankivsk, Karpatska str., 15
Keywords: solar energy, mathematical model, position of solar panels, meteorological conditions, software, model validation.

Abstract

The paper analyzes the current state and prospects of research in the field of mathematical modeling of technological processes in the context of solar energy. The physical and mathematical models of solar panels were considered, as well as the theoretical bases of energy conversion in solar panels, which are the basis for the principle of their functioning, were considered.

On the basis of the analysis carried out, a mathematical model of the dependence of the power of the solar panel on the angle of rotation was developed. The developed model takes into account the ambient temperature, the temperature received by the panel during operation, the effect of wind on the temperature of the panel, as well as the influence of time of day, day of the year, angles of the panel relative to the sun, the possibilities of environmental reflection. Also, this model takes into account the influence of the characteristics of the panel itself, and its auxiliary elements of functioning, on the power received by the consumer. In the work, an approbation of this mathematical model was carried out, the results of which indicate the possibility of its application for modeling the functioning of the panel under various environmental characteristics. The corresponding software for generating experimental data on the strength of the current produced from the angle of the panel, the position of the sun, the meteorological conditions, the reflecting properties of the surface, t. The conclusions are formulated and further perspectives on the use of such mathematical and software solutions for solving scientific and practical problems are determined.

Downloads

Download data is not yet available.

References

D. King, J. Kratochvil, and W. Boyson, “Temperature Coefficients for PV Modules and Arrays: Measurement Methods, Difficulties, and Results,” 26th IEEE PV Specialists Conference, 1997, pp. 1183-1186.

Clauser, J. F. (1974). Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9: 853—860.

В. Г. Литовченко, Б. М. Романюк, В. Г. Попов, В. П. Мельник, О. С. Оберемок, В. П. Кладько, І. П. Лісовський, В. В. Стрельчук, В. В. Черненко, В. О., «Шаповалов Комплексні дослідження кристалічного матеріалу для сонячної енергетики», Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2011р, т. 33, № 7, сс. 873—898.

В. М. Коваль, «Розрахунок зонного моделю нанокристалічного кремнію», Наносистеми, наноматеріали, нанотехнології 2009р, т. 7, № 4, сс. 987—998.

D. King, W. Boyson, and B. Hansen, “Improved Accuracy for Low-Cost Solar Irradiance Sensors,” 2nd World Conference on PV Solar Energy Conversion, Vienna, 1998, pp. 2001-2004.

D. King, T. Hund, W. Boyson, and J. Kratochvil, “Experimental Optimization of the Performance and Reliability of Stand-Alone Photovoltaic Systems,” 29th IEEE PV Specialists Conference, 2002.

Б.Н.Шарифов Т.Р.Терегулов, «Моделирование солнечной панели в программе MATLAB/Simulink», ISSN 1992‐6502 2015. Т. 19, № 4 (70). С. 77–83.

A.M.Трещ, «Моделирование солнечных батарей в среде matlab/simulink».

А.М. Пенджиев, Н.Г. Астанов, «Исследования мобильной солнечной фотоэлектрической станции в зависимости от ориентации» Наука. Мысль: электронный периодический журнал № 6-2. – 2016р.

D.L. King, W.E. Boyson, J.A. Kratochvill, «Photovoltaic Array Performance Model», SANDIA REPORT SAND2004-3535 Unlimited Release Printed December 2004.

Published
2018-11-22
How to Cite
Slabinoga, M., Kuchirka, Y., KrynytskyiО., & Yurkiv, N. (2018). THE SOLAR PANELS POWER CHANGE DEPENDING ON FROM THE MUTUAL BURNER CUT MODELING. METHODS AND DEVICES OF QUALITY CONTROL, (2(41), 18-24. https://doi.org/10.31471/1993-9981-2018-2(41)-18-24
Section
METHODS AND NON-DESTRUCTIVE CONTROL