Identification of automatic systems for acoustic emission diagnostics

Authors

  • O. V. Polyvoda
  • Yu. A. Lebedenko

Keywords:

automation, diagnostics, control, acoustic emission.

Abstract

The difficulties of automation control, which are connected with variability of input parameters and complexity of mathematical description of internal dynamic processes in the controlled object, are noted. The features of categorical concepts of automation of control of acoustic-emission diagnostics control are formulated and marked: control object, control system, control functions. The mathematical formalism of modeling the energy spectrum of acoustic emission signals is presented. A discrete and continuous approach to describing the oscillatory properties of the internal structure of a material under load is used. The structural model of the basic stages of management is offered, which includes multidimensional input of diagnostics information, ensuring the controllability of products, informatization of diagnostic parameters, direct measurements, identification of the current state of the object. Functional purposes of the acoustic emission diagnostics system have been determined. On the basis of generalization of information on experimental studies of the effect of stresses under uniaxial loading and four-point bending on the parameters of acoustic emission signals, data on the influence of deformation processes on the information parameters of AE steels and composite materials were investigated and systematized. Areas of their application and rational use are established. It is noted that most of the experimental works in domestic and foreign practice are devoted to the influence on the material of one type of deformation measurements of the structure of materials, while during the operation of structures the material is subjected to a complex effect of complex loads. An algorithm for identification of systems for automatic control of acoustic emission diagnostics has been developed, which differs taking into account the variety of factors affecting the initial variables, the complexity of their interactions and estimates using expert evaluation, system analysis and simulation modeling.

Downloads

Download data is not yet available.

References

Прахова М.Ю., Хорошавина Е.А., Краснов А.Н., Емец С.В. Система автоматизации в нефтяной промышленности. М.: Инфра-Инженерия, 2019. 304 с.

Омаров К.А., Столстовских И.Н., Кольга А.Д. Автоматизация проектирования систем контроля и технической диагностики конвейерных линий. Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2012. №2. С. 67-74.

Тарасик В.П., Рынкевич С.А. Проблемы диагностирования автотранспортных средств и пути их решения. Вестник Белорус-Росс ун-та. 2007. №1. С. 57-66.

Рынкевич С.А. Автоматизация управления и диагностирование гидромеханических передач. Вестник Белорус-Росс ун-та. 2009. №1(22). С. 22-29.

Баданина В.Л. Алгоритмы автоматизированного формирования детализированных программ диагностических обследований технического состояния паровых котлов теплоэлектростанций. Вестник Южно-Уральского университета. 2015. Т.15. №1. С. 113-116.

Яковлев А.В., Соснин В.А. Цифровая обработка акустических импульсов в системе акустико-эмиссионной диагностики КАЭМС. Техническая акустика. 2018. №3. С.12-18.

Дубов А.В. Автоматизация технического диагностирования аналоговых устройств. Молодой ученый. 2010. №5(16). С. 18-22.

Кузьмин А.Э. Автоматизация диагностики инженерно-технического состояния потенциально опасных объектов на основе комплексирования методов и средств неразрушающего контроля. Современные технологии обеспечения гражданской обороны и ликвидации последствии чрезвычайных ситуаций. 2012. №2. С.57-62.

Литвиненко В.І., Лур’є І.А., Боскин О.О. Автоматизація процесів управління акустико-емісійними діагностичними системами Вісник Тернопільського національного технічного університету. 2020. №1.

Sharko A. Models and methods of processing of information of loads of acoustic signals in technical diagnostic systems. Informatyka, Automatika, Pomiary. Politechnika Lubelska, Lublin Polska IAPGOS. 2018. No 3. P. 15-18.

Кунин И.А. Теория упругих сред с микроструктурой. Нелокальная теория упругости. М.: Наука, 1982. 424с.

Лисина С.А. Континуальные и структурно-феноменологические модели в механике сред с микроструктурой. Автореф. дис. канд. физ-мат. наук. Нижний Новгород, 2009. 20 с.

Marasanov V., Sharko A. Mathematical Models for Interrelation of Characteristics of the Developing Defects with Parameters of Acoustic Emission Signals. V. Marasanov. International Fronter Science Letters. 2016. Vol.10. P. 37-44

Surace C., Bovsunovsky A. The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mechanical Systems and Signal Processing. 2020. No 106523/ P. 136.

Kumar J., Sarmah R., Ananthakrishna G. General famework for acoustic emission during plastic deformation. Physical Review. 2015. Vol. 92. P.1441.

Папиров И.И., Стоев П.И. Обнаружение и исследование акусто-эмиссионных эффектов при пластической деформации сталей в магнитном поле. Доповіді Національній академії наук України. 2014. №1. С. 81-89.

Недосека А.Я., Недосека С.А., Маркашева Л.И., Кушнарева У.С., О распоз-навании изменений структуры материалов при разрушении по данным акустической эмиссии. Техническая диагностика и неразрушающий контроль. 2016. №4. С.9-13.

Carpinteri A., Lacidogna G., Pugno N. Structural damage diagnostic and lifetime assessment by acoustic emission monitoring. Engineering Fracture Mechanics. 2007. №74. P. 273-289.

Liu S, Li X, Li Z, Chen P., Yang X., Liu Y., Meas J. Energy distribution and fractal characterization of acoustic emission (AE) during coal deformation and fracturing. Int Meas Confederation. 2019.No 136. P.122-131.

Алексенко В.Л., Шарко А.А., Сметанкин С.А., Степанчиков Д.М., Юренин К.Ю. Идентифиакция структурных особенностей механизмов деформирования при изгибе методом акустической эмиссии. Техническая диагностика и неразрушающий контроль. 2019. №1. С. 32-39.

Алексенко В.Л., Шарко А.А., Сметанкин С.А., Степанчиков Д.М., Юренин К.Ю. Применение акустико-эмиссионных и тензометрических измерений к процессам диагностики деформационного упрочнения композиционных материалов на основе эпоксидной матрицы. Техн. диагностика и неразрушающий. Контроль. 2019. №3. С.49-54.

Mi, Y., Chen, Z., Wu, D. Acoustic Emission Study of Effect of Fiber Weaving on Properties of Composite Materials IEEE International Ultrasonics Symposium, IUS, 2018-October, art. no. 8579807(2018)

Prahova M.Yu., Horoshavina E.A., Krasnov A.N., Emets S.V. Sistema avtomatizatsii v neftyanoy promyishlennosti. M.: Infra-Inzheneriya, 2019. 304 p. [in Russian]

Omarov K.A., Stolstovskih I.N., Kolga A.D. Avtomatizatsiya proektirovaniya sistem kontrolya i tehnicheskoy diagnostiki konveyernyih liniy. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. 2012. No 2. P. 67-74. [in Russian]

Tarasik V.P., Ryinkevich S.A. Problemyi diagnostirovaniya avtotransportnyih sredstv i puti ih resheniya. Vestnik Belorus-Ross universiteta. 2007. No 1. P. 57-66. [in Russian]

Ryinkevich S.A. Avtomatizatsiya upravleniya i diagnostirovanie gidromehanicheskih peredach. Vestnik Belorus-Ross universiteta. 2009. No1(22). P. 22-29. [in Russian]

Badanina V.L. Algoritmyi avtomatizirovannogo formirovaniya detalizirovannyih programm diagnosticheskih obsledovaniy tehnicheskogo sostoyaniya parovyih kotlov teploelektrostantsiy. Vestnik Yuzhno-Uralskogo universiteta. 2015. Vol.15. No1. P. 113-116. [in Russian]

Yakovlev A.V., Sosnin V.A. Tsifrovaya obrabotka akusticheskih impulsov v sisteme akustiko-emissionnoy diagnostiki KAEMS. Tehnicheskaya akustika. 2018. No3. P.12-18. [in Russian]

Dubov A.V. Avtomatizatsiya tehnicheskogo diagnostirovaniya analogovyih ustroystv. Molodoy uchenyiy. 2010. No 5(16). P. 18-22. [in Russian]

Kuzmin A.E. Avtomatizatsiya diagnostiki inzhenerno-tehnicheskogo sostoyaniya potentsialno opasnyih ob'ektov na osnove kompleksirovaniya metodov i sredstv nerazrushayuschego kontrolya. Sovremennyie tehnologii obespecheniya grazhdanskoy oboronyi i likvidatsii posledstvii chrezvyichaynyih situatsiy. 2012. No2. P.57-62. [in Russian]

Lytvynenko V.I., Lurie I.A., Boskyn O.O. Avtomatyzatsiia protsesiv upravlinnia akustyko-emisiinymy diahnostychnymy systemamy Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu. 2020. No1. [in Russian]

Sharko A. Models and methods of processing of information of loads of acoustic signals in technical diagnostic systems. Informatyka, Automatika, Pomiary. Politechnika Lubelska, Lublin Polska IAPGOS. 2018. No 3. P. 15-18.

Kunin I.A. Teoriya uprugih sred s mikrostrukturoy. Nelokalnaya teoriya uprugosti. M.: Nauka, 1982. 424p. [in Russian]

Lisina S.A. Kontinualnyie i strukturno-fenomenologicheskie modeli v mehanike sred s mikrostrukturoy. Avtoref. dis. kand. fiz-mat. nauk. Nizhniy Novgorod, 2009. 20 p. [in Russian]

Marasanov V., Sharko A. Mathematical Models for Interrelation of Characteristics of the Developing Defects with Parameters of Acoustic Emission Signals. V. Marasanov. International Fronter Science Letters. 2016. Vol.10. P. 37-44.

Surace C., Bovsunovsky A. The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mechanical Systems and Signal Processing. 2020. No 106523. P. 136.

Kumar J., Sarmah R., Ananthakrishna G. General famework for acoustic emission during plastic deformation. Physical Review. 2015. Vol. 92. P.1441.

Papirov I.I., Stoev P.I. Obnaruzhenie i issledovanie akusto-emissionnyih effektov pri plasticheskoy deformatsii staley v magnitnom pole. Dopovidi Natsionalnii akademii nauk Ukrainy. 2014. No 1. P. 81-89. [in Russian]

Nedoseka A.Ya., Nedoseka S.A., Markasheva L.I., Kushnareva U.S., O raspoz-navanii izmeneniy strukturyi materialov pri razrushenii po dannyim akusticheskoy emissii. Tehnicheskaya diagnostika i nerazrushayuschiy kontrol. 2016. No 4. P.9-13. [in Russian]

Carpinteri A., Lacidogna G., Pugno N. Structural damage diagnostic and lifetime assessment by acoustic emission monitoring. Engineering Fracture Mechanics. 2007. No74. P. 273-289.

Liu S, Li X, Li Z, Chen P., Yang X., Liu Y., Meas J. Energy distribution and fractal characterization of acoustic emission (AE) during coal deformation and fracturing. Int Meas Confederation. 2019.No 136. P.122-131.

Aleksenko V.L., Sharko A.A., Smetankin S.A., Stepanchikov D.M., Yurenin K.Yu. Identifiaktsiya strukturnyih osobennostey mehanizmov deformirovaniya pri izgibe metodom akusticheskoy emissii. Tehnicheskaya diagnostika i nerazrushayuschiy kontrol. 2019. No1. P. 32-39. [in Russian]

Aleksenko V.L., Sharko A.A., Smetankin S.A., Stepanchikov D.M., Yurenin K.Yu. Primenenie akustiko-emissionnyih i tenzometricheskih izmereniy k protsessam diagnostiki deformatsionnogo uprochneniya kompozitsionnyih materialov na osnove epoksidnoy matritsyi. Tehn. diagnostika i nerazrushayuschiy. Kontrol. 2019. No 3. P. 49-54. [in Russian]

Mi Y., Chen Z., Wu D. Acoustic Emission Study of Effect of Fiber Weaving on Properties of Composite Materials IEEE International Ultrasonics Symposium, IUS, 2018-October, art. no. 8579807

Published

2020-08-31

How to Cite

Паливода, О. В., & Лебеденко . Ю. A. (2020). Identification of automatic systems for acoustic emission diagnostics. METHODS AND DEVICES OF QUALITY CONTROL, (1(44). Retrieved from http://mpky.nung.edu.ua/index.php/mpky/article/view/513

Issue

Section

METHODS AND EQUIPMENT OF NON-DESTRUCTIVE CONTROL