An algorithm of spatial expansion of images for diminishing of distortions in mobile and immobile images
Keywords:
mobile image, immobile image, filtration, confluence of image, distortions, pixel grateAbstract
Basic image spatial resolution algorithms were investigated. New improved structural schema for image super resolution was proposed. Analysis of the motion estimation algorithms and non-local means algorithm was performed. Main requirements and image fusion solutions are determined
Downloads
Download data is not yet available.
References
1. Protter M., Elad M., Takeda H., and Milanfar P. Generalizing the nonlocal-means to super-resolution reconstruction,// IEEE Trans. ImageProcess. – V. 18. – N. 1. – P. 36–51.
2. Matan Protter and Michael Elad "Super ResolutionWith Probabilistic Motion Estimation" IEEE Trans. ImageProcess. –V. 18. – N. 8. – P.45 – 48.
3. Baker S. and Kanade T. Limits on super-resolution and how to break them // IEEE Trans. Pattern Anal. Mach. Intell. – V. 24. – N. – 9. – P. 1167–1183.
4. Farsiu S., Robinson D., Elad M., and Milanfar P. Fast and robust multiframe superresolution // IEEE Trans. Image Process. – V. 13. – N. 10. – P. 1327–1344.
5. Farsiu S., Robinson D., Elad M., and Milanfar P. Advances and challenges in superresolution // Int. J. Imag. Syst. Technol. – V. 14. – N. 8. – P. 47–57.
6. Schultz R. R. and Stevenson R. L. Extraction of high-resolution frames from video sequences // IEEE Trans. Image Process. – V. 5. – N. 6. – P. 996–101.
7. Memin E. and Perez P. Dense estimation and object-based segmentation of the optical flow with robust techniques // IEEE Trans Image Processing – 1998. V. 7 – N 5.
8. Antoni Buades. Image and film denoising bynon-local means//, Ph. D. Thesis. – 2005.
9. Симонян К. А, Гришин С.В., Ватолин Д.С. Адаптивный метод оценки движения в видео // Сборник статей молодых ученых. – Вмик МГУ. – 2008.
10. Efros A. and Leung T. Texture synthesis by non parametric sampling// In Proc.Int. Conf. Computer Vision. – V. 2. – P. 1038. – 1999.
11. Park S.C., Park M.K., and KANG M.G., Super-Resolution Image Reconstruction: A Technical Overview // IEEE Signal Processing Magazine. – 2003. V. 20. – P. 21-36.
2. Matan Protter and Michael Elad "Super ResolutionWith Probabilistic Motion Estimation" IEEE Trans. ImageProcess. –V. 18. – N. 8. – P.45 – 48.
3. Baker S. and Kanade T. Limits on super-resolution and how to break them // IEEE Trans. Pattern Anal. Mach. Intell. – V. 24. – N. – 9. – P. 1167–1183.
4. Farsiu S., Robinson D., Elad M., and Milanfar P. Fast and robust multiframe superresolution // IEEE Trans. Image Process. – V. 13. – N. 10. – P. 1327–1344.
5. Farsiu S., Robinson D., Elad M., and Milanfar P. Advances and challenges in superresolution // Int. J. Imag. Syst. Technol. – V. 14. – N. 8. – P. 47–57.
6. Schultz R. R. and Stevenson R. L. Extraction of high-resolution frames from video sequences // IEEE Trans. Image Process. – V. 5. – N. 6. – P. 996–101.
7. Memin E. and Perez P. Dense estimation and object-based segmentation of the optical flow with robust techniques // IEEE Trans Image Processing – 1998. V. 7 – N 5.
8. Antoni Buades. Image and film denoising bynon-local means//, Ph. D. Thesis. – 2005.
9. Симонян К. А, Гришин С.В., Ватолин Д.С. Адаптивный метод оценки движения в видео // Сборник статей молодых ученых. – Вмик МГУ. – 2008.
10. Efros A. and Leung T. Texture synthesis by non parametric sampling// In Proc.Int. Conf. Computer Vision. – V. 2. – P. 1038. – 1999.
11. Park S.C., Park M.K., and KANG M.G., Super-Resolution Image Reconstruction: A Technical Overview // IEEE Signal Processing Magazine. – 2003. V. 20. – P. 21-36.
Downloads
Published
2009-11-13
How to Cite
Наконечний, А. Й., Федак, В. І., & Верес, З. Є. (2009). An algorithm of spatial expansion of images for diminishing of distortions in mobile and immobile images. METHODS AND DEVICES OF QUALITY CONTROL, (2(23), 115–119. Retrieved from https://mpky.nung.edu.ua/index.php/mpky/article/view/380
Issue
Section
METHODS AND DEVICES FOR THE TECHNOLOGICAL PARAMETERS CONNTROL