Experience of calculation development and implementation strain gauge sensor

Authors

  • V. V. Lopatin Інститут геотехнічної механіки ім. М.С. Полякова Національної академії наук України, Україна, 49005, Дніпропетровська обл., місто Дніпро, ВУЛИЦЯ СІМФЕРОПОЛЬСЬКА, будинок 2 А

DOI:

https://doi.org/10.31471/1993-9981-2020-1(44)-46-53

Keywords:

mining, strain gauge sensor, hysteresis, elastic element, multicriteria optimization, Pareto set, nonlinear deformation.

Abstract

In the mining industry, it is often necessary to directly measure forces with significant restrictions on the sensors, so the use of the range of existing sensors is not possible. In addition, the force and load sensor, which is designed for operation in severe mountain conditions, must be: with an extended range of operating temperatures, degree of protection IP67, moisture resistant in an aggressive environment and structurally designed so as not to violate safety requirements in mine workings. Studies have identified the functional limitations of the force sensor for mining - maximum deformation, overall dimensions and maximum stresses. The decisive factors in choosing a sensor design were precise fixation, reliability, adaptability to mining technological processes with safety and compliance with operating conditions, and reasonable cost. According to the requirements of industry standards of Ukraine, the geometric dimensions of the sensor were chosen in order to find the optimal solution. Based on this information, using a multi-parameter approach, many Pareto valid solutions are obtained. Based on many Paretooptimal solutions, a sensor variant was chosen for which, after applying the above approach, it was possible to reduce non-linearity and reduce the area between the forward and backward curves, as well as to get close to the found strain value in the sticker area. On the basis of an experimental batch of manufactured sensors, their refinement was performed in real mining. The developed sensor type 4201 DST-10 meets the safety requirements of the safety control system in mining and provides higher metrological accuracy than similar sensors developed by other authors. In 4201 DST-10, multicriteria optimization methods were used in designing the elastic elements of the force sensor for a load of 10 tons. The possibility of its use in similar harsh operating conditions at other facilities is allowed.

Downloads

Download data is not yet available.

References

Sobol I.M., Statnikov R.B. Vyibor optimalnyih parametrov v zadachah so mnogimi kriteriyami. M.: Drofa, 2006. 176p. [in Russian]

Statnikov R.B., Matusov I.B. O nedopustimyih, dopustimyih i optimalnyih resheniyah v zadachah proektirovaniya. Problemyi mashinostroeniya i nadezhnosti mashin. 2012. No 4. [in Russian] URL: http://naukarus.com/o-nedopustimyh-dopustimyh-i-optimalnyh-resheniyah-v-zadachah-proektirovaniya html

Greco Salvatore, Ehrgott Matthias, Figueira Jose Rui. Trends in Multiple Criteria Decision Analysis. Berlin: Springer. 2010. 412 p.

How many different types of force transducer are there? (FAQ - Force). URL: http://www.npl.co.uk/reference/faqs/how-many-different-types-of-force-transducer-are-there-(faq-force)#straingaugelcs html.

Shushkevich V.Ya. Osnovyi elektrotenzometrii. Minsk: Vyisheyshaya shkola 1975. 352p. [in Russian]

Osadchiy E.P. Proektirovanie datchikov dlya izmereniya mehanicheskih velichin. M.: Mashinostroenie, 1979. 480p. [in Russian]

Andreeva L.E. Uprugie elementyi priborov. M.: MAShGIZ, 1962. 456 p. [in Russian]

Gavryushin S.S., Baryishnikova O.O., Boriskin O.F. Chislennyiy analiz elementov konstruktsiy mashin i priborov. M.: Izdatelstvo MGTU im. I.E. Baumana, 2014. 480 p. [in Russian]

Sahnevich S.Yu., Altuhova E.I. Ispolzovanie beskontaktnyih ustroystv kontrolya v shemah zaschityi shahtnyih pod'emnyih ustanovok. Respubl. mezhved. nauch. tehn. sb. 2016. Vol. 97. P. 17-21. [in Russian]

Datchiki siloizmeritelnyie tenzorezistivnyie 4201 DST (MK 150. 420. 000 TE). Dnepropetrovsk: Metrikom, 2003. 8p. [in Russian]

Gotzman W. Beschleungungsmesser zur Prufung von Schachtfuhrungen.Dortmund: Bellman H., 1962. P. 156-168.

Sebela Z. Tensometrike mereni dynamiky viceianovych teznich zarizeni. UHLI. 1981. No 20. P. 453-461.

A.s. 594000 SRSR, MKI V66 V 7/02. Napravlyayuschiy bashmak pod'emnika / A.E. Gavrutskiy, G.N. Mushinskiy, V.I. Kostogriz, Yu.M. Grechuha. (SSSR).No 2412991/29-11; Zayavleno 19.10.76; Opubl. 25.02.78, Byul. 7. 2p. [in Russian]

A.s. 644705 SRSR, MKI V66 V 7/02. Napravlyayuschiy bashmak pod'emnika / A.E. Gavrutskiy, G.N. Mushinskiy, V.I. Kostogriz.(CSCR). No 2469703/29-11; Zayavleno 04.04.77; Opubl. 30.01.79, Byul. 4. 2 p. [in Russian]

Stefanescu D. M. Handbook of force transducers. Principles and components. Berlin: Springer. 2011. 612 p.

Published

2020-06-28

How to Cite

Lopatin, V. V. (2020). Experience of calculation development and implementation strain gauge sensor. METHODS AND DEVICES OF QUALITY CONTROL, (1(44), 46–53. https://doi.org/10.31471/1993-9981-2020-1(44)-46-53

Issue

Section

MEASUREMENT OF PHYSICAL AND MECHANICS PARAMETERS OF SUBSTANCES