Single-polar power supply of high frequency capacitive transducers for measurement

Authors

  • K. L. Nozdrachova НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТУкраїна, 61002, Харківська обл., Харків, Вул. Кирпачова, к 2
  • A. Yu. Slobodchuk НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ, Україна, 61002, Харківська обл., Харків, Вул. Кирпачова, к 2

DOI:

https://doi.org/10.31471/1993-9981-2020-1(44)-99-109

Keywords:

testing, measurements, diagnostics, capacitive transducer, circuitry, voltage radio signal generator, pulse duration, frequency

Abstract

It is possible to increase the sensitivity of capacitive ultrasonic transducers in three ways: increasing the capacitance of the transducer, increasing the polarizing and pulsed high-frequency voltage applied in the transducer cover, using modern methods of processing information packet pulses excited and received from the product. The increase in the capacity of the transducer is limited by the design capabilities of the transducer itself and the selection of the dielectric separating the plate from the surface of the electrically conductive testing object. Using modern methods of processing the received information significantly complicates and increases the cost of implementation of the device using a capacitive transducer. The most acceptable, at the moment, way to increase the sensitivity is to increase the power of high-frequency voltage supply generators provided that packet pulses are excited. The generator presented in the article allows to create pulsed peak voltages in low-capacitance transducers of more than 3 kV with frequencies up to 5 MHz with a duration of 1 period of the filling frequency and sounding frequencies up to 1 kHz. It was experimentally shown that using the prototype of a new generator, the amplitudes of the pulses transmitted through a steel sample 20 mm thick were obtained, the ratio of which to the noise amplitude received by the miniature piezoelectric transducer is 13 times. Using the developed powerful amplifier of voltage pulses will increase the amplitude of the pulses received from the transducer and repeatedly reflected in the product.

Downloads

Download data is not yet available.

References

Ermolov I. N., Lange Yu. V. Nerazrushayuschiy kontrol: Spravochnik: V 7 t. Pod obsch. red. V. V. Klyueva. T. 3: Ultrazvukovoy kontrol M.: Mashinostroenie, 2004. 864 p. [in Russian]

Kanevskiy I.N. Salnikova E.N. Nerazrushayuschie metodyi kontrolya: ucheb. Posobie. Vladivostok: Izd-vo DVGTU, 2007. 243 p. [in Russian]

Suchkov H.M., Nozdrachova K.L., Mishchanchuk E.V., Yeroshchenkov V.M. Prylady i metody akustychnoho kontroliu: navch. posibn. Kharkiv : NTU «KhPI», 2011. 220 p. [in Ukrainian]

W. Kuhl, G.R. Schodder and F.-K. Schröder, ‘Condenser transmitters and microphones with solid dielectric for airborne ultrasonics, Acustica 1954, No 4. P. 519-532.

W. Manthey, N. Kroemer and V. Mágori, Ultrasonic transducers and transducer arrays for applications in air, Meas. Sci. Techn. 1992, No 3. P. 249-261

Chimenti D.E., Fortunko C.M. Characterization of composite prepreg with gas-coupled ultrasonics. Ultrasonics 1994. No 32. P. 261-264.

Rogovsky A.J. Development and application of ultrasonic dry-contact and air-contact C-scan systems for non-destructive evaluation of aerospace composites. Mat. Eval. 1991. No 49, P. 1491-1497.

Babic M. 200-kHz ultrasonic transducer coupled to the air with a radiating membrane, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1991 UFFC-38. P. 252-255.

Lynnworth L.C. Ultrasonic impedance matching from solids to gases. IEEE Trans. Sonics, Ultrason. 1965 SU-12. P. 37-48.

Gururaja T.R., Schultze W.A., Cross L.E., Newnham R.E., Auld B.A. Wang Y.J. Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Son. Ultrason. 1985. SU 32. P. 481-498.

Fox J.D., Khuri-Yakub B.T. Kino G.S. High-frequency acoustic wave measurements in air’. Proc. IEEE 1983 Ultrason. Symp., Vol.1, P. 581-584.

Fox J.D., Khuri-Yakub B.T. Kino G.S. Acoustic resonator transducer for operation in air. Elec. Lett. 1985. No 21. P. 694-696.

Krauß O., Gerlach R., Fricke J. Experimental and theoretical investigations of SiO2-aerogel matched piezo-transducers. Ultrason. 1994. No 32, P. 217-222.

Teshigawara M., Shibata F., Teramoto H. High resolution (0.2mm) and fast response (2ms) range finder for industrial use in air. Proc. 1989 IEEE Ultrason. Symp., P. 639-642.

Tone M., Yano T.and Fukumoto A. High-frequency ultrasonic transducer operating in air. Japan. J. Appl. Phys. 1984, No 23, P. 436-L438.

Fortunko C.M., Schramm R.E., Teller C.M., Light G.M., McColskey J.D., Dubé W.P. Renken M.C. Pulse-echo gas-coupled ultrasonic crack detection and thickness gaging. Proc. Rev. Quant. Nondest. Eval. 1995. Vol. 14A and 14B, Ch. 312, P. 951-958.

Platte M. PVDF ultrasonic transducers for ultrasonic testing. Ferroelectrics. 1991, No 115. P. 229-246.

Ohigashi H., Koga K., Susuki M. Nakamishi T. Piezoelectric and ferroelectric properties of P(VDF-TrFE) copolymers and their application to ultrasonic transducers. Ferroelectrics 1984, No 60. P. 263-276.

Newnham R.E., Skinner D.P. Cross L.E. Connectivity and piezoelectric-pyroelectric composites. Mat. Res. Bull. 1978. No 13. P. 525-536.

Sahdom A.S. Application of Micro Electro-Mechanical Sensors (MEMS) Devices with Wifi Connectivity and Cloud Data Solution for Industrial Noise and Vibration Measurements.. Journal of Physics: Conference Series, Volume 1262, 1st Colloquium on Noise, Vibration and Comfort 7 March 2019, Selangor, Malaysia DOI: https://doi.org/10.1088/1742-6596/1262/1/012025

Myhushchenko R.P., Suchkov G.M., Petrishchev O.N., Nozdrachova K.L. Model of electromechanical receiving transducers of ultrasound Rayleigh wave. Technical Electrodynamics. 2016(6). P. 83-89 DOI: https://doi.org/10.15407/techned2016.06.083

Miguschenko R.P., Suchkov G.M., Petrischev O.N., Desyatnichenko A.V. Teoriya i praktika elektromagnitno-akusticheskogo kontrolya. Chast 5. Osobennosti konstruirovaniya i prakticheskogo primeneniya EMA ustroystv ultrazvukovogo kontrolya metalloizdeliy: monografiya. Harkiv: TOV «Planeta-print», 2016. 230 p. [in Russian]

Miguschenko R.P., Suchkov G.M., Radev H.K., Petrischev O.N., Desyatnichenko A.V. Elektromagnitno-akusticheskiy preobrazovatel dlya ultrazvukovoy tolschinometrii ferromagnitnyih metalloizdeliy bez udaleniya dielektricheskogo pokryitiya. TehnIchna elektrodinamIka. 2016. No2. P. 78–82. [in Russian].

Myhushchenko R.P., Suchkov G.M., Petrishchev O.N., Nozdrachova K.L. Model of electromechanical receiving transducers of ultrasound Rayleigh wave. Technical Electrodynamics. No 2016(6). P. 83-89 DOI: https://doi.org/10.15407/techned2016.06.083.

Migachev S.A., Kurkin M.I., Smorodinskiy Ya.G. Beskontaktnoe vozbudzhenie zvuka v metalle videoimpulsom elektricheskogo polya. Defektoskopiya. 2016. No. 11. P. 48-53. [in Russian].

Published

2020-06-28

How to Cite

Nozdrachova, K. L., & Slobodchuk, . A. Y. (2020). Single-polar power supply of high frequency capacitive transducers for measurement. METHODS AND DEVICES OF QUALITY CONTROL, (1(44), 99–109. https://doi.org/10.31471/1993-9981-2020-1(44)-99-109

Issue

Section

METHODS AND DEVICES FOR THE TECHNOLOGICAL PARAMETERS CONNTROL