The downhole jet pumps experimental studies efficiency improving

Authors

  • Ye. І. Kryzhanivskyy Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • D. O. Panevnyk Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019

DOI:

https://doi.org/10.31471/1993-9981-2020-1(44)-16-23

Keywords:

downhole jet pump, hydraulic modeling, similarity criteria, ejection system, model and full scale objects

Abstract

On the basis of the analysis of the existing criteria of hydraulic similarity, the rules of transferring the results of laboratory tests of jet pumps to the conditions of their operation in the well are considered.  The geometric similarity of the flow part of the jet pump is determined by the diameters of the working nozzle, the mixing chamber and the diffuser, the lengths of the mixing chamber and the diffuser, and the distance between the working nozzle and the mixing chamber.  The kinematic similarity of mixed flows is determined by the ratio of the speeds or costs of the injected and the workflows, and the dynamic one by the relative pressure in the form of the pressure ratio of the mixed, injected and workflows.  To characterize the similarity of motion modes and physical properties of flows in the flowing portion of a jet pump, a Reynolds number for working, injected, and mixed flows can be used.  The functional relationship between the quantities that characterize the process of mixing threads can be represented as a relationship between the similarity criteria that are made of them.  The equality of any two relevant similarity criteria made up of the basic parameters and initial boundary conditions is a sufficient sign of the similarity of the two systems.  A generalized Eulerian criterion is proposed for modeling a wellbore jet pump workflow that provides a relationship between geometric, kinematic, and dynamic dimensionless complexes.  Due to the structural features of the ejection systems, the generalized criterion is presented in the form of a ratio of Euler criteria of mixed and working flows, the numerical values of which do not differ from the magnitude of the relative pressure of the jet pump.  As a result of the conducted researches, the values ​​of dimensionless complexes are determined, which determine the conditions for transferring the results of experimental studies of the jet pump model to the real design of the well ejection system.

Downloads

Download data is not yet available.

References

Zhu H.-Y., Liu Q.-Y. Pressure drawdown mechanism and design principle of jet pump bit. Scientia Iranica B. 2015. No 22 (3). P.792-803.

Khelifa B., Fraser K., Pug T. Subsea hydraulic jet pump optimizes well development offshore Tunisia. World Oil. 2015. No 11. P.71-76.

Shaiek S. , Anres S., Valdenaire T. Sand management in subsea produced water separation unit – review of technologies and tests. 12th Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, March 25–27 2015. 13 p.

Dunchevskiy G.M., Tsabiev O.N., Solomin V.S. Opredelenie poter v kamere smeshivaniya struynyih nasosov razlichnogo tipa. Izvestiya vuzov «Mashinostroenie». 1987. No 5. P. 29-32. [in Russian]

Fozao K.F. Metodicheskie rekomendatsii po proektirovaniyu parametrov rabotyi struynogo nasosa dlya intensifikatsii dobyichi nefti iz fontannyih skvazhin. Neftepromyislovoe delo. 2001. No 5. P. 25-29. [in Russian]

Kabdesheva Zh.E., Verbitskiy V.S., Dengaev A.V., Lambin D. N. Issledovanie harakteristik vyisokonapornogo struynogo apparata pri otkachke struey zhidkosti gazozhidkostnoy smesi. Neftyanoe hozyaystvo. 2003. No3. P. 81-83. [in Russian]

Demyanova L. A. Vliyanie rasstoyaniya ot rabochego sopla do kameryi smeshivaniya na harakteristiki struynogo apparata pri otkachke gazozhidkostnyih smesey. Neftyanoe hozyaystvo. 1998. No 9. P. 84- 85. [in Russian]

Podvidz L.G., Rodimova A.M., Kalachev V.V. Vliyanie dlinyi kameryi smesheniya na energeticheskie i kavitatsionnyie harakteristiki struynyih nasosov. Izvestiya vuzov «Mashinostroenie». 1979. No 2. P. 66–69. [in Russian]

Podvidz L.G. Kavitatsionnyie svoystva struynyih nasosov. Vestnik mashinostroeniya. 1978. No 3. P. 17–20. [in Russian]

Kazak A.S., Rosin I.I., Chicherov I.G. Pogruzhnyie bezshtangovyie nasosyi v dobyiche nefti. M.: Nedra, 1978. 232 p. [in Russian]

Lyamaev B.F. Gidrostruynyie nasosyi i ustanovki. L.: Mashinostroenie. 1988. 256 p. [in Russian]

Sokolov E.Ya., Zinger N.M. Struynyie apparatyi. M.: Energoatomizdat, 1989. 352 p. [in Russian]

Onysko O.R. Fizychne modeliuvannia inzhenernykh protsesiv. Ivano- Frankivsk: Fakel, 2001. 39 p. [in Ukrainian]

Mocherniuk D.Iu., Livak I.D., Kostyshyn V.S.,. Kontsur I.F. Osnovy modeliuvannia. Ivano-Frankivsk: Fakel, 2003. 216 p. [in Ukrainian]

Kabdesheva Zh.E. Podbor ratsionalnoy geometrii protochnoy chasti vyisokonapornogo struynogo apparata pri otkachke odnorodnoy zhidkosti. Neftepromyislovoe delo. 2003. No 1. P. 30-34. [in Russian]

Demyanova L.A. Raschet harakteristiki vyisokonapornogo struynogo apparata, rabotayuschego v optimalnom rezhime. Neftepromyislovoe delo. 2001. No2. P. 20-29. [in Russian]

Kryizhanivskiy E.I., Panevnik D.A. Eksperimentalnoe issledovanie skvazhinnogo struynogo nasosa. Nauka I Studia. Nowoczesne Technologie Informacyjne (Przemysl, Poland). 2019. No 5 (194). P .30-40.

Published

2020-06-24

How to Cite

Kryzhanivskyy Y. І., & Panevnyk, D. O. (2020). The downhole jet pumps experimental studies efficiency improving. METHODS AND DEVICES OF QUALITY CONTROL, (1(44), 16–23. https://doi.org/10.31471/1993-9981-2020-1(44)-16-23

Issue

Section

METHODS AND EQUIPMENT OF NON-DESTRUCTIVE CONTROL