Analysis of growth drive breakdown by the increase of the Dashav UGS fountain pipes

Authors

  • O. T. Chernova Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019
  • B. I. Gershun Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Street Ivano-Frankivsk Ukraine, 76019

DOI:

https://doi.org/10.31471/1993-9981-2020-1(44)-76-88

Keywords:

underground storage, well, increased diameter, fountain pipes, bottomhole, flow rate, hydraulic resistance, energy saving.

Abstract

Scientists who were analyzing the results of the underground gas storage (UGS) complex of Ukraine, say that for modern conditions the maximum daily productivity should be increased by 30-35%. Since the beginning of the creation of gas storage facilities  passed than 40 years, work is carried on outdated and physically worn out equipment. Work of the wells (which were build based on the old technologies at low reservoir pressure) are characterized by low productivity because their bottomhole zone is partially occluded by the mud filtrate, partially contaminated with compressor oil; due to the selective placement of wells in the underground storage area, some of them were formed so-called "stagnant" zones; extraction of all active gas volume which takes 100-180 days. Need for Ukraine to further develop underground gas storage should be aimed at increasing both the active volume of gas and the daily productivity of gas storage facilities.

The main directions of increasing the productivity of gas storage are the drilling of horizontal shafts in both new wells and old ones in experience [9], the formation of open holes in the drilling of new wells and the milling of operational columns in the "old" drilled holes, filters, hydraulic fracturing, construction of large diameter wells, additional perforation of gas-saturated intervals.

Nowadays, the most important problem is the reconstruction and modernization of existing underground storage facilities through replacement of equipment. This will not only save the achieved performance, but also can improve it. Due to the reconstruction of the equipment, gas preparation will be improved, gas storage capacity will be increased and operating costs will be reduced. Therefore, an increase in the daily productivity of UGS can be achieved, first of all, due to the improvement of the main element in the gas storage facility - the operational well.

In order to analyze this issue, the paper analyzes the efficiency of replacing the fountain pipes of the Dashavsky UGS wells with a larger diameter, and presents the results of the hydraulic, technical and economic calculation of the implementation of this UGS reconstruction.

 

Downloads

Download data is not yet available.

References

Ilnytskyi M.K., Kozlov A.V., Hlushych V.H., Vitryk V.H., Petunin O.I., Messer O.H. Dosvid burinnia bokovoho horyzontalnoho stovbura v ekspluatatsiinii koloni na Shtormovomu HKR. Naft. i hazova promyslovist. 1999. No 3. P. 26-28. [in Ukrainian]

Schelkachev V.N., Lapuk B.B. Podzemnaya gidravlika. Izhevsk: Regulyarnaya i haoticheskaya dinamika, 2001. 736 p. [in Russian]

Korotaev Yu.P., Reytenbah G.R., Belov V.I. [i dr.] O vozmozhnosti sozdaniya vyisokoproduktivnyih skvazhin bolshogo diametra. Gazovoe delo. 1970. No 4. P. 26–29. [in Russian]

Poltavskaya M.D. Verzhbitskiy V.V., Gunkina T.A. Vliyanie uvelichennogo diametra stvola na povyishenie proizvoditelnosti skvazhin. Vestnik PNIPU. Geologiya. Neftegazovoe i gornoe delo. 2013. No 6. P.74-85. [in Russian]

Tarko Ya.B., Tarko Ya.Ia. Pidvyshchennia produktyvnosti sverdlovyn zdiisnenniam hidroimpulsnoi imploziinoi dii na pryvybiinu zonu plasta. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2008. No 3(28). P. 17-21. [in Ukrainian]

Kondrat R.M., Horbiichuk M.I., Dremliukh N.S. Doslidzhennia vplyvu diametra stovbura na produktyvnist hazovykh sverdlovyn. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. 2017. Vol 3. P. 101-109. [in Ukrainian]

Suchkov B.M. Povyishenie prizvodi-telnosti malodebitnyih skvazhin. Izhevsk: Udmurt NIPIneft, 1999. 645 p. [in Russian]

Halii, P.P. Semchyshyn O.O., Susak O.M. ta in. Analiz efektyvnosti zaminy fontannykh trub sverdlovyn Dashavskoho PSH na bilshyi diametr. Naukovyi visnyk Natsionalnoho tekhnichnoho universytetu nafty i hazu. 2004. No 2(8). P. 181-185. [in Ukrainian]

Olijnyk A., Chernova O. Estimation of gas losses based on the characteristic of the state of wells of dashava storage. Eastern-evropean journal of enterprise technologies. 2017. No 6/8 (90). P. 25-32. [in Russian]

Himer R.F., Himer P.R., Derkach M.P. Pidzemne zberihannia hazu: pidruchnyk. Ivano-Frankivsk: Fakel, 2001. 215 p. [in Ukrainian]

Derry D. Sparlin. Pressure-packing technique controlls anconsolitatend sand. Oil and Gas. 1971. Vol. 65. No 11. P. 87–93.

Korotaev Yu.P. Ekspluatatsiya gazovyih mestorozhdeniy. M. Nedra, 1975.415p. [in Russian]

Zvit pro naukovo-doslidnu robotu "Tekhnolohichnyi proekt tsyklichnoi ekspluatatsii Dashavskoho PS". Kharkiv: UKRNDIHAZ, 1999. 282 p. [in Ukrainian]

Vasilev V.A. Gunkina T.A., Zinoveva L.M., Kopchenkov V.G. Innovatsi-onnyie tehnologii povyisheniya produktivnosti skvazhin. Neftepromyislovoe delo. 2014. No 6. P. 5-74. [in Russian]

Arestov B.V. Razrabotka i issledovanie tehniki i tehnologii sozdaniya graviynyih filtrov v skvazhinah: avtoref. dis. na soiskanie uchenoy stepeni kand. tehn. nauk : spets. 05.15.06 – “Skvazhinnaya razrabotka neftegazovyih mestorozhdeniy”. Moskva, 1987. 24p. [in Russian]

Renberthy W.L., Cope B.I. Design and productivity of gravel-packed completion 1980.

Basaryigin Yu.M. Budnikov V.F, Bulatov A.I. Teoriya i praktika preduprezhdeniya oslozhneniy i remonta skvazhin pri ih stroitelstve i ekspluatatsii : [sprav. posobie]: v 6t. M.: OOO «Nedra-Biznestsentr», 2003. Vol. 5. 2006. 431 p. ISBN 5-8365-0156-4. [in Russian]

Published

2020-06-28

How to Cite

Chernova, . O. T., & Gershun, . B. I. (2020). Analysis of growth drive breakdown by the increase of the Dashav UGS fountain pipes. METHODS AND DEVICES OF QUALITY CONTROL, (1(44), 76–88. https://doi.org/10.31471/1993-9981-2020-1(44)-76-88

Issue

Section

METHODS AND DEVICES FOR THE TECHNOLOGICAL PARAMETERS CONNTROL