ALGORITHM OF ADJUSTMENT OF SUB-REGULATOR COEFFICIENTS WITH FUZZY LOGIC METHODS USING
DOI:
https://doi.org/10.31471/1993-9981-2020-2(45)-102-108Keywords:
algorithm, PID controller, fuzzy logic, transient process, overshoot, settling time, control object, automatic control system, identifying, turboshaft engineAbstract
The fuzzy PID tuning algorithm of proportional, integral, and derivative terms based on the fuzzy logic has been developed in the article. The fuzzy logic focuses on logic-linguistic models of representation of knowledges and it is the effective technology for creation of intellectual control systems of complex dynamic objects in the incomplete conditions.
It has been researched that the fuzzy tuning algorithm of the basic coefficients for the PID controller сompared with the tuning algorithm based on the trial and error method, improved the quality of the of the transient process, namely reduces the overshoot and the settling time.
Another advantage of the fuzzy PID tuning algorithm is that the PID controller coefficients can change their values in accordance with changing conditions of operation control object, which improves the adaptive properties of the automatic control system.
The structure of the automatic control system based on the fuzzy PID controller has been developed, the main components of which are the fuzzy PID controller and the transfer function of the control object. The fuzzy PID controller consists of the following main components: the fazzyfication unit, the rule base and the defazzyfication unit. This structure of the automatic control system does not require special means of identifying the parameters of the turboshaft engine and its implementation using modern microcontrollers is quite simple and affordable.
The fuzzy PID tuning algorithm has been tested with using the parameters of the turboshaft engine ДГ90Л2 with power 16MW of the compressor 16 ГЦ2-395/53-76С of Dolyna linear production administration of gas transmittal pipelines.
Downloads
References
Besekerskiy V.A., Popov O.P. Teoriya system avtomatychnoho upravlinnya. Sankt-Peterburh: yzd-vo Profesiya, 2003. 752 s.
Loriya M.H., Porkuyan O.V., Ananʹyev M.V., Tselishchev O.B. Optimalʹni Nastroyuvannya rehulyatoriv promyslovykh system upravlinnya tekhnolohichnymy ob'yektamy: monohrafiya. Syevyerodonetsʹk: vyd-vo SNU im. V. Dalya, 2019. 192 s.
Ivanov A.O. Teoriya avtomatychnoho keruvannya: pidruchnyk. Dnipropetrovsʹk: Natsionalʹnyy hirnichniy universytet, 2003. 250 s.
Himadiev A.H., Kryuchkov A.N., Bystrov N.D., Yermilov M.A. Doslidzhennya perekhidnykh i chastotnykh kharakterystyk typovykh lanok SAR: metod. Vkazivky. Samara: vyd-vo Samar. derzh. aerokosm. un-tu, 2013. 52 s
Harasymiv V. M., Harasymiv T. H., Moyseyenko O. V. Systema otsinyuvannya tekhnichnoho stanu protochnoyi chasty dvostupenevykh nahnitacha pryrodnoho hazu na osnove nechitkoyi lohiky. Metody ta prylady kontrolyu yakosti. 2018. № 1 (40). S. 70-78.
Zhao Z.-Y., Tomizuka M., Isaka S. Fuzzy Gain Scheduling of PID Controllers. IEEE Transaction on Sysyem, Man and Cybernetics, 1993. Vol. 23. N 5. P. 1392-1398.
Kuznetsov A.V., Makarʹyants H.M. Syntez nechitkoho rehulyatora za dopomohoyu paketu prykladnykh prohram systemy Matlab: metodychnyy posibnyk. Samara: vyd-vo samar. derzh. aerokosm. un-tu, 2016. 59 s.