CALCULATION OF PARAMETERS OF ULTRASONIC WAVE IN ELASTIC MEDIA BY GALERKIN METHOD BASED ON WAVELET – FUNCTIONS

Authors

  • З. П. Лютак Івано–Франківський національний технічний університет нафти і газу, вул. Карпатська, 15, м. Івано-Франківськ, 76019, Україна
  • А. А. Мандра Управління магістральних газопроводів "Черкаситрансгаз", вул.Сумгаїтська, 3, м.Черкаси, Україна
  • І. З. Лютак Івано–Франківський національний технічний університет нафти і газу, вул. Карпатська, 15, м. Івано-Франківськ, 76019, Україна

Keywords:

ultrasound, wavelet, galerkin's method, differential equation.

Abstract

Development of numerical methods that calculates the parameters of ultrasonic wave's propagation in testing objects serves as source for both information for comparison with results of control and further analysis of the object state. It is presented the algorithm that calculates the method. The results of calculation are presented in a form of tables and charts. It is developed the method of calculation of differential equations that describe propagation of ultrasonic waves in solid media by Galerkin's approach that based on projection method with wavelets. In the result it is determined that with help of the developed method it is possible to perform analysis of parameters of ultrasonic wave propagation by Daubechies wavelets with level of 6, 8, and 10. Increasing level of Daubechies wavelets is requires increasing number of samplings for chosen way. This requires increasing the calculation time and computer resources while this approach do not increases substantially the precision.  The method allows analysing propagation of wave with any lengths of ways. Increasing the lengths of path of propagation requires increasing the number of samplings of discretisation of differential equation. The results of calculation of differential equation can be compared with testing results it is allows to detect defects and changes of mechanical properties of media where propagating ultrasonic wave.

Downloads

Download data is not yet available.

References

1. Yousefi H. Wavelet Based Simulation of Elastic Wave Propagation. Wave Propagation. Theories and Applications [Text] / H. Yousefi and A. Noorzad.- InTech, 2013.- P.354-380.- ISBN 9789535109792.
2. Goedecker S. Wavelets and Their Application for the Solution of Partial Differential Equations in Physics [Text] /S. Goedecker.- Stuttgart, Germany: Max-Planck Institute for Solid State Research, 2009.- 72 p.- ISBN 2880743982.
3. Beylkin, G. Fast wavelet transforms and numerical algorithms [Text] / G. Beylkin, R. Coifman, V. Rokhlin // I. Communications on pure and applied mathematics.- 1991.- 44(2).- P. 141-183.
4. Mallat S. G. A theory for multiresolution signal decomposition: the wavelet representation / S. G. Mallat // IEEE Transactions on Pattern Analysis and Machine Intelligence.- 1989.- 11(7.- P. 674-693.
5. Mishra V. Wavelet Galerkin Solutions of Ordinary Differential Equations / V. Mirsha, Sabina // Int. Journal of Math. Analysis.- 2011.- Vol. 5.- no. 9.- P. 407 – 424.
6. Besora J. Galerkin Wavelet Method for Global Waves in 1D [Text] : Master Thesis: 2004 / J. Besora.- Stockholm, 2004.- 43 p.
7. Latto, A. The evaluation of connection coefficients of compactly supported wavelets [Text] / A. Latto, H. L. Resnikoff, & E. Tenenbaum // In Proceedings of the French-USA Workshop on Wavelets and Turbulence.- New York, 1991.- P. 76-89.
8. Lu D. Treatment of Boundary Conditions in the Application of Wavelet-Galerkin Method to a SH Wave Problem [Text] / Dianfeng Lu, Tadashi Ohyoshi, Lin Zhu // Akita University.- 1996.- P. 1-10.

Published

2013-06-04

How to Cite

Лютак, З. П., Мандра, А. А., & Лютак, І. З. (2013). CALCULATION OF PARAMETERS OF ULTRASONIC WAVE IN ELASTIC MEDIA BY GALERKIN METHOD BASED ON WAVELET – FUNCTIONS. METHODS AND DEVICES OF QUALITY CONTROL, (1(30), 16–23. Retrieved from https://mpky.nung.edu.ua/index.php/mpky/article/view/153

Issue

Section

METHODS AND EQUIPMENT OF NON-DESTRUCTIVE CONTROL

Most read articles by the same author(s)

1 2 > >>