Mathematical model of distribution of ultrasonic waves directed into the pipeline with welded joints
Keywords:
mathematical model, Weld, pipeline, multi–layered medium, guided wave, transfer matrix coefficients, general matrix.Abstract
A mathematical model describing the propagation of ultrasonic guided waves in a multi–layered medium is proposed. Weld of the pipeline is proposed to consider as multi–layered elastic medium. Presented equations that describe the displacement field and stress created by bulk ultrasonic waves. The mathematical description of the formation of guided waves in the plate is presented. The formation is described by a system of equations each describes a bulk wave. For solving this system of equations is constructed a determinant and are shown equations for each element. For the mathematical description of the propagation of ultrasonic guided waves in a multi–layered media offers two approaches transfer matrix coefficients and a general matrix. In the method of transfer matrix coefficients the inner layers will be part of the equations that describe guided waves through the distribution of wave field (elementary volume displacement and stress) at the top and bottom interfaces of external layers. General matrix approach consists in collecting all the layers of media in a matrix.
Downloads
References
2. Auld B. A. Acoustic Fields and Waves in Solids: volume 1 / B. A. Auld. – Florida: Krieger Publishing Company Malabar, 1990. – 431 р. – ISBN–10 0894644904.
3. Rose J. L. Ultrasonic Waves in Solid Media / J. L. Rose. – Cambridge University Press, 1999. – 476 р. – ISBN–10 0521640431.
4. Мандра А. А. Акустичний контроль напружено–деформованого стану обв'язки агрегатів газокомпресорних станцій: дис: … канд. техн. наук: 05.11.13 / А. А. Мандра.– Івано–Франківськ, 2006.– 232 с.
5. Lowe M. J. S. Plate waves for the NDT of diffusion bonded titanium: thesis: … doctor of philosophy / M. J. S. Lowe.– London, 1992.– 299 p.
6. Лютак І. З. Побудова та обчислення математичної моделі поширення кільцевих мод в трубопроводі спрямованими хвилями в ультразвуковому діапазоні частот / І. З. Лютак // Технічна діагностика і неруйнівний контроль.– 2009.– № 2.– С. 30–35.
7. Cawley P. Practical Long Range Guided Wave Inspection – Applications to Pipe and Rails / P. Cawley // NDE2002 prediction, assurance, improvement. National Seminar of ISNT Chennai 5, 2002.– 16 p.
8. Thomson W. T. Transmission of elastic waves through a stratified solid medium / W. T. Thomson // Journal Appl. Phys., 1950.– Vol. 21.– P. 89–93.
9. Haskell N. A. Dispersion of surface waves on multilayered media / N. A. Haskell // Bulletin Seismic Society America, 1953.– Vol. 43.– P. 17–34.
10. Mohammad S. A. Structural integrity and fatigue crack propagation life assessment of welded and weld–repaired structures: thesis: … in partial fulfillment of the requirements for the egree of Doctor of Philosophy / S. A. Mohammad.– South Dakota, 2005.– 192 p.
11. Knopoff L. A matrix method for elastic wave problems / L. Knopoff // Bulletin of Seismic Society of America, 1964.– Vol. 54.– P. 431–438.
12. Schmidt H. Efficient numerical solution technique for wave propagation in horizontally stratified environment / H. Schmidt, F. B. Jensen // Computers & Mathematics with Applications, 1985.– Vol. 11.– P. 699–715.
13. Pialucha T. P. The reflection coefficient from interface layers in NDT of adhesive joints / T. P. Pialucha.– London, 1992.– PhD thesis.– 254 p.
14. Glinka G. Effect of Residual Stress on Fatigue Crack Growth in Steel Weldments Under Constant and Variable Amplitude Load / G. Glinka // Fracture Mechanics. ASTM, 1979.– 677.– P. 198–214.