IMPROVEMENT OF THE ALGORITHM FOR DETERMINING THE GEOMETRIC DIMENSIONS OF OBJECTS IN A PLANE USING THE SCANLINE METHOD

Authors

  • S.Yu. Plesnetsov
  • K.D. Virchenko
  • A.O. Kolesnichenko
  • Yu.O. Plesnetsov

DOI:

https://doi.org/10.31471/1993-9981-2024-2(53)-5-15

Keywords:

metrology, measurement, image analysis, software development, contour search, scanline, spline interpolation

Abstract

The object of research in the paper is the spline analysis of the scan line. The purpose of the work is the development of an improved algorithm for scanning contours and determination of geometric parameters of samples in the plane using spline interpolation tools. An overview of a number of existing studies in the field of software solutions for the definition and analysis of contours in images is presented. Trends in the development of algorithmic and neural network systems for finding contours of objects have been revealed, but the task of metrological assessment of such objects is poorly developed and can be investigated. The method of finding points on the contour was developed using spline interpolation to the vector of pixels of the scanline with the detection of points of contrast transition through the analysis of the points of change of sign of the piecewise function of the spline on the module of the function of the derivative of the function of the spline, taking into account the contrast difference between the tangent points on the investigated image of the control object or measurement. The appropriate visualization for the case of a simple scanline with mathematical testing based on the SciLab system is given. Based on the methodology, an algorithm for scanline analysis was developed and a software tool was developed that implements this algorithm. The development is based on a renderer that implements the OpenGL standard using elements of the Boost library to perform spline interpolation, as well as GTK to obtain an enclosing rectangle of minimum area by the rotary caliper method. The reliability of the work results was evaluated, with results that are acceptable for engineering use of the software under the condition of correct configuration. Testing of the software tool was performed on the basis of a set of test images, which included oval ideal test samples without gradient transition zones and with binary color, model samples rendered by Cycles rendering tools in Blender 3D, and photographic test samples.

Downloads

Download data is not yet available.

References

Smeliakov, K.S., Sandrkin, D.L., Tovchyrechko, D.O., Vakulik, Ye.V., Drob, Ye.M.Rozrobka metodu shvydkoho poshuku tsyfrovoho zobrazhennia u skhovyshchakh danykh. Systemy obrobky informatsii. 2021.S.54-63. DOI: 10.30748/soi.2021.165.07[in Ukrainian]

Borkivskyi B., Tesliuk V. Vykorystannia neiromerezhevykh zasobiv dlia rozpiznavannia obiektiv u mobilnykh systemakh z obkhodom pereshkod. Scientific Bulletin of UNFU. 2023. Tom 33. №4. S. 84-89. DOI:10.36930/40330412[in Ukrainian]

Xue, Ruidong, Hooshmand, Helia, Isa, Mohammed, Piano Samanta, Leach, Richard. Applying machine learning to optical metrology: a review. Measurement Science and Technology. 2024. Vol. 36. DOI:10.1088/1361-6501/ad7878

Li Zekun, Guo Baolong, Meng Fanjie, Jiang Bingting. Fast shape recognition via a bi-level restraint reduction of contour coding. The Visual Computer.2023. Vol. 40. P. 2599–2614. DOI:10.1007/s00371-023-02940-9

Villarrubia John, Dixson Ronald, Vladár András. Proximity-associated errors in contour metrology. Proceedings of SPIE - The International Society for Optical Engineering. 2010. 7638. DOI:10.1117/12.848406

Ferguson, J. Multivariable curve interpolation. Journal of the ACM (JACM),1964. Vol. 11, No. 2, pp. 221-228/

Cubic spline Interpolation [Elektronne dzherelo]. Geeks for Geeks. URL: https://www.geeksforgeeks.org/cubic-spline-interpolation/

Malachivskyi P.S., Skopetskyi V.V. Neperervne y hladke minimaksne splain-nablyzhennia. Kyiv: Naukova dumka, 2013. 271 s. [in Ukrainian]

Dovhyi B.P., Loveikin A. V., Vakal Ye. S., Vakal Yu.Ie. Splain-funktsii ta yikhnie zastosuvannia. Navch. posib. Kyiv: VPTs "Kyivskyi universytet", 2017. 120 s.

Boost C++ Libraries. URL: https://www.boost.org/

Scilab. URL: https://www.scilab.org/

Cubic B-spline interpolation. Boost C++ Libraries Documentation. URL: https://live.boost.org/doc/libs/1_65_0/libs/math/doc/html/math_toolkit/interpolate/cubic_b.html

Zaichenko M. S., Pliesnetsov S. Yu. Vyznachennia heometrychnykh parametriv obiektu kontroliu skanlain-metodom. Teoretychni ta praktychni doslidzhennia molodykh vchenykh : zb. tez dop. 17-yi Mizhnar. nauk.-prakt. konf. mahistrantiv ta aspirantiv, 28-30 lystopada 2023 r. / hol. Ye. I. Sokol ; orhkom.: R. P. Myhushchenko [ta in.] ; Nats. tekhn. un-t "Kharkiv. politekhn. in-t" [ta in.]. – Elektron. tekst. dani. – Kharkiv, 2023. S. 46. URI: https://repository.kpi.kharkov.ua/handle/KhPI-Press/72741[in Ukrainian]

Pliesnetsov S. Yu. Kopach K. D. Realizatsiia prohramnoi biblioteky dlia sheidernoho OpenGL-renderu v mezhakh rozrobky vymiriuvalnoi systemy. Informatsiini tekhnolohii: nauka, tekhnika, tekhnolohiia, osvita, zdorovia Information technologies: science, engineering, technology, education, health : tezy dop. 31-yi Mizhnar. nauk.-prakt. konf. MicroCAD-2023, 17-20 travnia 2023 r. / red. Ye. I. Sokol ; uklad. H. V. Lisachuk. – Kharkiv : NTU "KhPI", 2023. S. 486. URI https://repository.kpi.kharkov.ua/handle/KhPI-Press/71935[in Ukrainian]

farseer3_mfc. GitHub [Elektronnyi resurs]. URL: https://github.com/Rastrelly/farseer3_mfc

Blender. URL: https://www.blender.org/

Akulov S.O., Pliesnetsov S.Iu. Alhorytm avtomatychnoho poshuku heometrychnykh parametriv obiektu u ploshchyni z vykorystanniam udoskonalenoho skanlain-alhorytmu. Informatsiini tekhnolohii: nauka, tekhnika, tekhnolohiia, osvita, zdorovia: tezy dopovidei KhXKhII mizhnarodnoi naukovo-praktychnoi konferentsii MicroCAD-2024, 22-25 travnia 2024 r. / za red. prof. Sokola Ye.I. – Kharkiv: NTU «KhPI». – 1665 s. S. 496 (25 hod.) [in Ukrainian]

Published

2025-03-28

How to Cite

Plesnetsov, S., Virchenko, K., Kolesnichenko, A., & Plesnetsov, Y. (2025). IMPROVEMENT OF THE ALGORITHM FOR DETERMINING THE GEOMETRIC DIMENSIONS OF OBJECTS IN A PLANE USING THE SCANLINE METHOD. METHODS AND DEVICES OF QUALITY CONTROL, (2(53), 5–15. https://doi.org/10.31471/1993-9981-2024-2(53)-5-15

Issue

Section

METHODS AND EQUIPMENT OF NON-DESTRUCTIVE CONTROL