MATHEMATICAL MODEL OF THE DYNAMIC PROCESS OF LOW-TEMPERATURE SEPARATION

Authors

  • M. I. Horbiychuk Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., Ivano-Frankivsk, 76019
  • I. S. Yednak Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., Ivano-Frankivsk, 76019

DOI:

https://doi.org/10.31471/1993-9981-2024-1(52)-74-88

Keywords:

low-temperature separation, mathematical model, linearization, transfer functions, structural diagram

Abstract

The gas extracted from the well contains impurities - oxygen, nitrogen, hydrogen sulfide, as well as condensate, heavy hydrocarbons butane propane and their derivatives. Before the gas is sent to consumers, it is purified. The gas purification process takes place in two stages; in the first stage, it is purified from mechanical impurities, and in the second stage, water, heavy hydrocarbons and condensate are removed from the gas. In the case when gas under high pressure (not less than 14 MPa) comes out of the well, an effective method of its purification is low-temperature separation, which is based on the Joule-Thomson effect. The essence of the Joule-Thomson effect is that the process of throttling natural gas causes its temperature to decrease to minus values. The condition for the effectiveness of the low-temperature separation process is compliance with the technological regulations, which are ensured by means of local automation, which performs the functions of stabilizing the parameters of the technological process. Existing automatic stabilization systems are single-loop and do not take into account the existence of cross-links between technological parameters, which significantly reduces the efficiency of the low-temperature separation process. Therefore, the aim of the work was to create a mathematical model of the low-temperature separation process, which made it possible to identify existing cross-links between technological parameters, which is the methodological basis for the synthesis of an effective separation process control system. Based on the law of conservation of mass and the regularities of the exchange of substances between the liquid and gas phases, mathematical models of statics and dynamics of the low-temperature separation process in terms of "input-output" were obtained. The mathematical model of the dynamics of the low-temperature separation process was linearized and the matrix transfer function of the object was obtained on its basis, which made it possible to formalize the channels of internal interactions between input and output values.

Downloads

Download data is not yet available.

References

1. Szilas A. R. Production and Transport of Oil and Gas. Akademiai Kiado. Budapest, 1975. 264 p.

2. Abdel-Aal H. K., Mohamed Aggour, Fahim M. A. Petroleum and Gas Field Processing. Marcel Dekker, INC. New York Basel. 358 p.

3. Savchenko O.O., Balinskyi O.S. Nahrivannia pryrodnoho hazu za dopomohoiu enerhetychnoho rozdilnyka na diiuchii hazorozpodilnii stantsii. URL: https://ena.lpnu.ua:8443/server/api/core/bitstreams/35d71acb-c02b-487f-860a-28eb2f95134b/content [in Ukrainian]

4. Kondrat O.R., Hutak A.D. Enerhoefektyvna modyfikatsiia ustanovky nyzkotemperaturnoi separatsii hazu. Naftohazova haluz Ukrainy. 2015. No 5. P. 26–30. [in Ukrainian]

5. Poling Bruce E., Prausnitz John M., OConnell John P. The Properties of Gases and Liquids. McGraw Hill Professional. 2000. 768 p.

6. Horbiichuk M. I., Kulynyn N. L. Matematychna model protsesu nyzkotemperaturnoi separatsii. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu. 2006. No 1 (13). P. 88-92. [in Ukrainian]

7. Horbiychuk M.I., Yednak I.S., Skrypka O.A. Mathematical modelling of the low-temperature separation process. Modern engineering and innovative technologies. Vol. 27. Part 1. June 2023. P. 101–121. URL: https://www.moderntechno.de/index.php/ meit/issue/view/meit27-01/meit27-01

8. Horbiichuk M. I. Modeliuvannia obiektiv i system keruvannia v naftovii i hazovii promyslovosti: navch. posibnyk. Chastyna 2. Ivano-Frankivsk: IFDTUNH. 1999. 226 p. [in Ukrainian]

9. Astrelin I.M., Zapolskyi A.K., Suprunchuk V.I., Prokofieva V.M. Teoriia protsesiv vyrobnytstv neorhanichnykh rechovyn: navch. posibnyk. K.: Vyshcha shkola. 1992. 399 p.

10. Horbiichuk M.I., Povarchuk D.D. Matematychna model systemy keruvannia protsesom dvostupenevoi separatsii nafty. Metody ta prylady kontroliu yakosti. 2017. No 2 (39). P. 107–116. [in Ukrainian]

11. Kamenska T.A., Rudnytska H.A., Ponomarov M.Ie. Fizychna khimiia. Khimichna termodynamika: navch. posibnyk. K.: KPI im. Ihoria Sikorskoho. 2021. 257 p. [in Ukrainian]

12. Kropyvnytskyi D.R., Horbiichuk M. I. Pobudova matematychnoi modeli burovoho nasosnoho ahrehatu dlia avtomatychnoi systemy keruvannia tyskom na yoho vykhodi. Metody ta prylady kontroliu yakosti. Ivano-Frankivsk: IFNTUNH. 2023. No 1 (50). P. 48–59. [in Ukrainian]

13. Kompresorni stantsii. Kontrol teplotekhnichnykh ta ekolohichnykh kharakterystyk hazoperekachuvalnykh ahrehativ: SOU 60.03-30019801-011:2004. Ofits. vyd. K.: DK «Ukrtranshaz». 2004. 117 p. [in Ukrainian]

14. Horbiichuk M.I., Yednak I.S. Mathematical Model Of The Static Mode Of The Low-temperature Separation Process. URL - https://doi.org/10.30890/2709-2313.2024-29-00-023

15. Himmelblau D. M. Process Analysis by Statistical Methods. John Wiley and Sons, Inc. New York, London, Sydney, Toronto. 1970. 947 p. URL: https://dokument.tips/documents/process-analysis-by-statistical-methods-d-himmelblau.html?page=66 [in Ukrainian].

16. Liaposhchenko O. O. Teoretychni osnovy protsesiv inertsiino-filtruiuchoi separatsii: dys. ... d-ra tekhn. nauk: 05.17.08. Sumy. 2016. 435 p. [in Ukrainian]

17. Susak O. M., Kasperovych V. K., Andriishyn M. P. Truboprovidnyi transport hazu: pidruchnyk. Ivano-Frankivsk: IFNTUNH. 2013. 345 p. [in Ukrainian]

Published

2024-06-30

How to Cite

Horbiychuk, M. I., & Yednak, I. S. (2024). MATHEMATICAL MODEL OF THE DYNAMIC PROCESS OF LOW-TEMPERATURE SEPARATION. METHODS AND DEVICES OF QUALITY CONTROL, (1(52), 74–88. https://doi.org/10.31471/1993-9981-2024-1(52)-74-88

Issue

Section

MATHEMATICAL MODELING, COMPUTATIONAL METHODS, OPTIMAL CERULATION AND DISCRETE STRUCTURES